

6: cytochrome system & drug metabolism

objectives

- Revise the intent of drug metabolism and its different phases.
- > Define the role of cytochrome system in relation to drug metabolism.
- Expand on the nature, location, nomenclature, structure, distribution & function of CYT P450.
- Focus on its regulation; directly & indirectly, its induction & inhibition in relevance to drug interactions.
- Interpret the molecular mechanism of interactions by CYT P450.
- Classify its different isoforms, their substrates, inducers & inhibitors.
- > Delineate some of its genetic variations.

Color index

- extra information and further explanation
- important
- doctors notes
- **Drugs names**
- Mnemonics

Metabolism and elimination of a

substance

Pages 2-4 in 8 minutes ©

- When a substance is identified by the body as a foreign substance (drugs, toxins, etc.) the body will try to metabolize (change) and eliminate that substance out, this process occurs mainly (NOT always) in the liver.
- Drugs being mostly lipophilic, the liver subjects them to chemical transformation (metabolism) to become inactive & easily excreted
- Metabolism occurs mainly in the "METABOLIC CLEARING HOUSE"

Reduction

Hydrolysis

to parent

Metabolite more

active than parent A product with different effect Toxic metabolite الدكتورة قالت مب مهمه، يعني مروا عليها على السريع لا تعقدون نفسكم ٧

vsítem

More explanation in the next slide

The sn	Only in male slides							
metab	metabolism. in particular they contain the enzyme known as mixed							
functio	on oxidases or monooxygenases .							
The ad	ctivity of these enzymes requires both:							
1. a	reducing agent (NADPH)							
Z. dr	in molecular oxygen ; (Zatoms)							
substr	ate molecule, with one oxygen atom appearing in the product and							
other i	n the form of water							
	cycle of Cytochrome P450 in drug oxidation	ς.						
Micr	osomal drug oxidations require P450,P450 reductase, NADPH, and	molecular oxygen						
Step 1	Briefly, oxidized (Fe ³⁺) P450 combines with a drug substrate to form	n a binary complex						
Step 2	NADPH donates an electron to the flavoprotein P450 reductase, which in turn reduces the oxidized P450 drug complex							
ю	A second electron is introduced from NADPH via the same P450 re	ductase, which						
tep	serves to reduce molecular oxygen & to form an activated oxygen-	P450-substrate						
St	complex							
4	This complex (oxygen-P450-substrate complex) in turn transfer act	tivated oxygen to						
Step	the drug substrate to form the oxidize product	/0						
In this c	oxidation – reduction process, two microsomal enzymes play a key role.	Only in male slides						
• Tł	ne first is a flavoprotein, NADPH-cytochrome P450 reductase (Flavin mono							
nu דו	Icleotide and Flavin dinucleotide)							
te	rminal oxidase							
	······							
	NADP ⁺ Reduced Oxidized Drug	s + O ₂						
	I I Fee							
	Reductase							
	P450							
	NADPH A Oxidized A Reduced A Drug	ς-OH + H ₂ O						
Cytochrome P450 "CYT450": superfamily is the terminal rate limiting oxidase of this								
system								

tochrome

Its enzymes are part of a cascade → transfers electrons from molecular oxygen to oxidize the drugs

Extra explanation (phase I & II)

★ قبل ما تتم هذي العملية 🖈

(FeO)³⁺ extracts a H atom from DH (the drug) to form pair of transient free radicals: D⁻ & Fe²⁺OH⁻. D- acquires the bound OH- radical to form hydroxylated drug (**DOH**) \rightarrow which is released from the complex with **regeneration of P450** in its initial state.

Activation or Inactivation can be processed by any food, intrinsic products or extrinsic xenobiotics

as drugs (usually the lipophylic) that have to be metabolized.

remains in the

blood

is inhibited and the avlibelity of terfenadine will be high in the blood (overdose)

CYPs: Drug-Drug interaction

Molecular Basis Of Drug-drug Interaction

The orphan nuclear receptor PXR (pregnane X receptor) is a TRANSCRIPTION FACTOR that regulates the expression of the CYP P450 genes

An enzyme inducer that:

- 1) Binds and activates PXR (Transcription factors)
- 2) PXR translocate in nucleus
- 3) dimerize (joins up) with RXR (retinoid X receptor)
- 4) The heterodimer PXR/RXR will induce expression of CYT P450 isoenzymes to increase metabolism of drug B.

Outcome:

Increase metabolism of the inducer itself which will decrease its pharmacological actions leading to tolerance or even complete nullification and also it will increase co-administrated drugs metabolism. (Decreased EFFICACY)

enzyme inhibitor that:

- i. Binds and prevents activates PXR.
- ii. Repression of CYPs P450 isoenzymes
- iii. Decrease in Drug B metabolism.

Outcome:

Retard (decreased) **metabolism and excretion** of inhibitor and coadministrated drugs leading to **prolong** action of those drugs (inhibitors and co-administered drugs)

(Increased TOXICITY)

Drug A-inducer

Most common, 30% of CYP (<u>مطلب علی درن علی درن معی درن A4</u>) Found in the liver & GIT. Responsible for the metabolism of: - Most calcium channel blockers, Most benzodiazepines, Most HIV protease inhibitors, Most HMG-CoAreductase inhibitors, Cyclosporine, Most non-sedating antihistamines, Cisapride

ا الجدول الدكتورة نبهت عليه كثير وقالت إنه أهم جدول بالمحاضرة! Inhibitors Inducers **Substrates** Dugs inhibit CYP3A4/5 Drugs induce CYP3A4/5 Drugs that metabolize by CYP3A4/5 Immunosuppressant: Immunosuppressant: <u>Barbi</u>turates Ο <u>Cyclo</u>sporine <u>ثالث</u> مره أقول لكم (<u>3)</u> لا ترمون أوراق Cyclosporine A4 سووا لها إعادة تدوير (recycle) (<u>3)</u> لا ترمون أوراق <u>A4</u> سووا لها <u>إ**عادة**</u> AzoleAntifungals: Carbamazepine (Amazing) باین إنه بحسن (Amazing) Azole Antifungals: <u>تدویر، (recycle)</u> Fluconazole Fluconazole **فلوسی کأنها يا زول** قاعدہ تط کم، تری کلها **3** نسخ A4 ! لبش اذا أحد قا Ketoconazole Dexamethasone أُلَّا المُعْتَقَدَ المُعْتَقَدَ المُعَتَقَدَ المُعَتَقَدَ المُعَتَقَدَ المُعَتَقَدَ المُعَتَقَدَ المُعَتَقَدَ المُعَتَقَد مُعَتَقَد المُعَتَقَد مُعَتَقَد المُعَتَقَد مُعَتَقَد مُعَتَقَد مُعَتَقَد المُعَتَقَد مُعَتَقَد المُعَتَقَد المُعَتَقَد المُعَتَقَد المُعَتَقَد المُعَتَقَد مُعَتَقَد مُعَتَقًا مُعَتَقًا مُعَتَقَد مُعَتَقَد مُعَتَقَد مُعَتَقَد مُعَتَقًا مُعَتَقَد مُعَتَقًا مُعَتَقَد مُعَتَقَد مُعَتَقَد مُ مُعَتَقَد مُ **تکون زول** ب Antibiotics: Itraconazole Erythromycin • <u>Rifampicin / Rifampin</u> Clarithromycin • Antibiotics: رفيف دايم متحمسة Erythromycin Ca²⁺ channel blockers: Clarithromycin Rifabutin مكوس نقراها باين دى أمل Amlodepine Troleandomycin Verapamil نراها **فیه رابر** اسمها <u>أ</u>مل o Protease Inhibitors : o Phenytoin فين اللي <u>توه متحسن</u> تخيل عندنا <mark>تحليل إحصاني (statistic = statin)</mark> ونبي (<u>3)</u> نسخ على ورق <u>A4</u>له Statins: Ritonavir
 (<u>Navir</u>) <u>Never</u> give the other the chance to <u>inhibit</u>/ discourage your spirits Atorvastatin باول <mark>حمل</mark> لها تکون مرره Cimetidine أ السم شين ويشط وظائف الجسم أ Progestins Cancer Chemotherapy: Chloramphenicol (نقراها ما فيه Cyclophosphamide • Nefazadone فترة النفاس تكون النفسية مشطة ثالث مره أقول لكم (3) لا مون أوراق <u>A4</u> سووا لها أسهل رتبو ها كذا لما تحفظون Tamoxifen نقرا أول مقطع لا فوز، Grape Fruits والواحد يتثبط إذا ما فاز إعادة تدوير (recycle) BCD RR PP 😳 Non-Sedating Antihistaminics Astamizole خلاص تم يا زول راح نطبع (3) نسخ على ورق <u>A4</u> Benzodiazipines ا يمديك يا زلمي تطبع (3) نسخ على ورق <u>A4</u> Clonazepam

Genetic variation: genetic polymorphisms in CYT P450 isoenzymes have been observed & are reasons behind the ALTERED RESPONSE to drug therapy

Induced by: smoking tobacco

Catalyzes primary metabolism of: Theophylline, Imipramine, Propranolol, Clozapine

Inhibited by: Many fluoroquinolone antibiotics, Fluvoxamine, Cimetidine

CYP2C9

اللون الأخضر هو عنوان، مب ملاحظات الدكاتره

* Absent in 1% Caucasians and African-Americans

Primary metabolism of: Most NSAIDs (including <u>COX-2</u>), S-warfarin (the active form), Phenytoin

Inhibited by: Fluconazole

نربط هالمجموعة بجملة <u>"To see</u> you at <u>9</u>

Genetic variation: Warfarin, phenytoin, & tolbutamide are examples of drugs with <u>narrow therapeutic index</u> that are <u>metabolized by CYP2C9</u>. Clearance of these drugs is impaired in genetic variation of the enzyme this will \uparrow toxicity

* Absent in 20%-30% of Asians, 3-5% Caucasians

Inhibited by: Omeprazole, Isoniazid, Paroxetine, Ketoconazole

Genetic variation: Polymorphism in CYP2C19 shows increased & prolonged action of its substrates as **omeprazole**. This has been an advantage as in those variants $\rightarrow \uparrow$ cure rates in peptic ulcer patient with Helicobacter pylori Benefit.

Cytochrome System					
Phase 1	Oxidation, Reduction, Hydrolysis				
Phase 2	It deals with: Inactive metabolite Active metabolite Metabolite similar to parent Metabolite more active than parent A product with different effect Toxic metabolite				
Distribution	Highly concentrated in hepatocytes Enterocytes of the small intestine				
Function	Responsible for most of the OXIDATIVE METABOLISM Endogenously and Exogenously				
Regulation	 Activation or Inactivation can be processed by any food, intrinsic products or extrinsic xenobiotics as drugs. Either directly or by expression or repression of its relevant genes 				
	 The orphan nuclear receptor PXR (pregnane X receptor) is a TRANSCRIPTION FACTOR that regulates the expression of the CYP P450 genes. 				
Classification and isoforms	 CYP3A4/5 : 36% (most abundant) CYP2D6: 19% CYP2C8/9: 16% CYP1A/2 : 11% CYP2C19: 8% 				

CYI	P3A4 (MOST COMMO	ON)	هذا الجدول الدکتورة نبهت عليه کثير وقالت إنه أهم جدول بالمحاضرة!	CYP2D6	CYP1A2	CYP2C9
Substrate: Immunosuppressant: Cyclosporine Azole Antifungals: Fluconazole Antibiotics: Erythromycin Clarithromycin Ca ²⁺ channel blockers: Amloganico	Inhibitors : Immunosuppressant Cyclosporine Azole Antifungals: Fluconazole Antibiotics: Erythromycin Clarithromycin Troleandomycin -Ritonavir -Grape Fruits -Cimetidine - Chloramphenicol -NefazadoneIn R 	Ind Rifa Rifa Rifa	ucers: ampicin / ampin abutin enytoin	 has the most frequent polymorphisms in all CYT P450. Therefore the metabolism will decrease then: side effects will appear The pro-drugs cannot 	Induced by: <u>smoking</u> <u>tobacco</u> Catalyzes primary metabolism of: Theophylline, Imipramine, Propranolol, Clozapine Inhibited by: fluoroquinolone antibiotics, Fluvoxamine, Cimetidine	Primary metabolism of: Most NSAIDs (including COX-2), S- warfarin (the active form), Phenytoin Inhibited by: Fluconazole
Verapamil Statins: Atorvastatin Cancer		Bar	bamazepine biturates	be converted to their therapeutically active metabolite Catalyzes primary metabolism of: Codeine, Many β- blockers, Many tricyclic antidepressants . Inhibited by: Fluoxetine, Haloperido, Paroxetine, Quinidine		CYP2C19
Chemotherapy: Cyclophosphamide Tamoxifen Non-Sedating Antihistaminics Astamizole Benzodiazipines Midazolam Clonazepam		Dex Pro BC	kamethasone gestins D RR PP			Primary metabolism of: Diazepam, Omeprazole, Phenytoin Inhibited by: Omeprazole, Isoniazid, Paroxetine, Ketoconazole

Q1 was in doctors' slides

Q1:A 50 years old, patient was treated for the last 3 years by the hypocholestrolemic agent; atorvastatin. Yesterday he began to complain of severe muscle pains, weakness & reddish discoloration of urine He receives daily multivitamins & his lab results last week, proved that he has become diabetic, for which he was prescribed metformin. He was also started on a course of fluconazole for a concomitant fungal infection. From drug history, the diagnosis of his current state was likely rhabdo-myositis (severe musculoskeletal toxicity) & was verified by the lab finding of severe elevation in creatinine phosphokinase. "Which one of the following drug-drug interaction on CYT 3A4 is the likely cause of his current state?

- A. Metformin + Atrovastatin
- B. Atrovastatin + Fluconazole
- C. Metformin + Fluconazole

Q2: The cytochrome P435 are mainly responsible for metabolism of many drugs , In which phase they act ?

A. Phase I

B. Phase II

C. Both of them

Q3: Which one of the following cytochrome P450 isoenzymes is involved in themetabolism of largest number of drugs in human's liver ?A. CYP1A2B. CYP2D6C. CYP3A4

Q4: Which one of the following cytochrome P450 isoenzymes is the mostcommon to Genetic variation in human?A. CYP1A2B. CYP2D6C. CYP3A4

Q5: An epileptic patient who use phenytoin as antiepileptic drugs, he also use Astamizole to treat his urticaria and allergy. If he develop drug-drug interaction, what may happen in his case ?

- A. Sub-therapeutic effect of Astamizole .
- B. Increase the risk of tolerance for phenytoin .
- C. Both of them.

/					
5)	4)	<u>3</u>	2)	1)	
C	Β	C	⊳	B	
! 					Ż

Q6: An patient who use Cimetidine as antiulcer drug. , he travelled to endemic area with fungal infection, so he was given fluconazole as antifungal. If he develop drug-drug interaction, what may happen in his case ?

- A. Sub-therapeutic effect of Cimetidine .
- B. Increase the risk of toxicity by Cimetidine .
- C. Both of them.

Q7: Patient with cardiac diseases who is on many medications to control his case. These drug are: Amiodarone as antiarrhythmic drugs, & Verapamil as antihypertensive/ antianginal/ antiarrhythmic drug, Atorvastatin as antihyperlipidemia. Later, he had infected by TB and was given Clarithromycin and Rifampicin as anti-TB drugs. 6 weeks later, he develop arrhythmia even he did not stop any of his antiarrhythmic drugs. Which one of the following drug-drug interaction on CYT 3A4 is the likely cause of his current state?

- A. Amiodarone & Clarithromycin
- B. Amiodarone & Rifampicin
- C. Both of them

Q8: Patient with cardiac diseases who is on many medications to control his case. These drug are: Amiodarone as antiarrhythmic drugs, & Verapamil as antihypertensive/ antianginal/ antiarrhythmic drug, Atorvastatin as antihyperlipidemia. Later, he had infected by TB and was given Clarithromycin and Rifampicin as anti-TB drugs. 6 weeks later, he develop statin-induced myopathy including severe muscle pains and weakness . Which one of the following drug-drug interaction on CYT 3A4 is the likely cause of his current state?

- A. Atorvastatin & Clarithromycin
- B. Atorvastatin & Rifampicin
- C. Both of them

References :

1-436 Dr. Alia and Dr. Saeed's slides and notes

2-435 teamwork

@pharma436 Your feedback

* الشعار و القالب الأساسي من تصميم لين التميمي