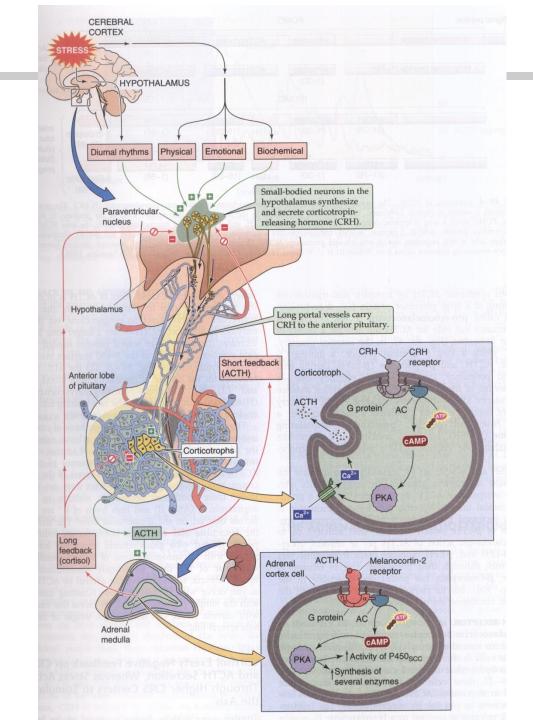


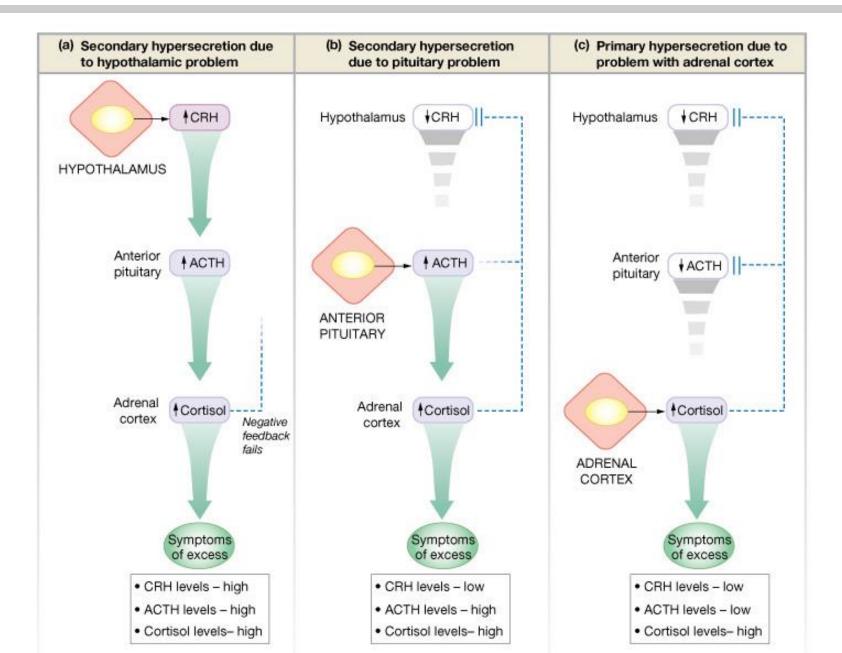
Endocrine Physiology

The Adrenal Gland 2

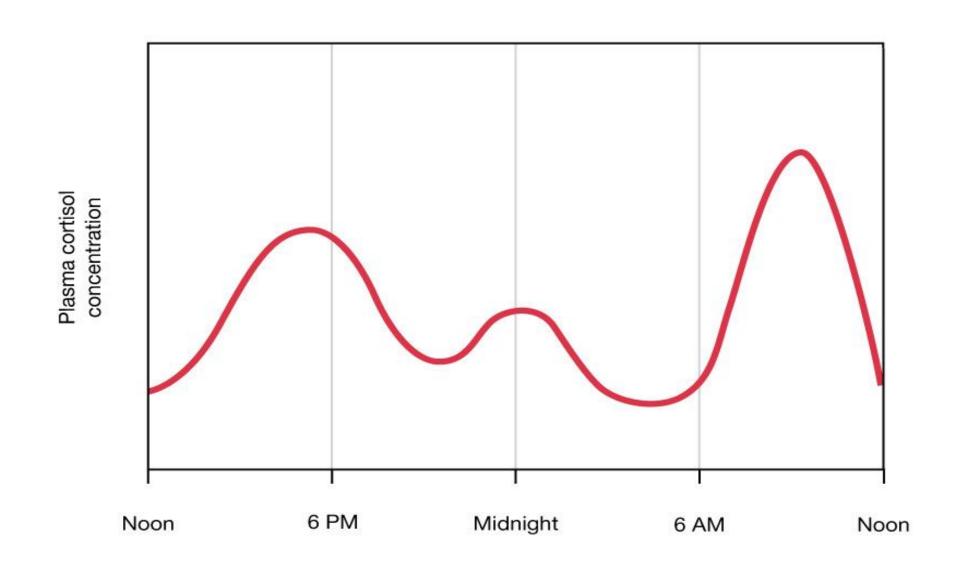
Dr. Khalid Alregaiey


Glucocorticoids

- Produced by the **fasciculata** and reticularis layers of the adrenal cortex
- Glucocorticoids (cortisol): recognized early to increase plasma glucose levels:
 - Mobilization of amino acids from proteins
 - Enhance liver gluconeogenesis
- Target tissues: most body tissues


Glucocorticoids (cont.)

- CRH from hypothalamus is the major regulator of ACTH secretion
- ADH is also a potent ACTH secretagogue
- ACTH from anterior pituitary stimulates cortisol synthesis and secretion
- CRH (and ACTH) are secreted in pulses
- The greatest ACTH secretory activity occurs in the early morning hours and diminish late in the afternoon.


HPA Axis

Primary and secondary hypersecretion of cortisol

Circadian rhythm of cortisol secretion

Actions of Glucocorticoids

- Metabolic response to fasting:
 - Gluconeogenesis from amino acids (increased expression of the enzymes)
 - Mobilization of stored fat (activation of HSL) and its use in β -oxidation and the production of ketone bodies

Effect of glucocorticoids: on carbohydrate metabolism

stimulation of gluconeogenesis by the liver (rate increases 6 to 10 fold)

- enzymes required to convert amino acids into glucose are increased (activation of DNA transcription)
- mobilization of amino acids from extrahepatal tissues (muscles)
- increase in glycogen storage in liver cells
- Decreased glucose utilization by the cells

Effect of glucocorticoids: on protein metabolism

mobilization of amino acids from non-hepatic tissues

- proteocatabolic effect in all body cells except of the liver
- decreased protein synthesis
- decreased amino acids transport into extrahepatic tissues (muscles, lymphatic tissues)
- Proteoanabolic effect in the liver
 - enhanced liver proteins
 - increased plasma proteins

Anti-inflammatory Effects of GC

- Glucocorticoids are used to alleviate inflammation
 - stabilize lysosomal membranes (reduce their rupture and release of proteolytic enzymes).
 - Inhibit production of prostaglandins and leukotrines (mediate inflammation). This occurs via inhibiting phospholipase A2, which is needed for PG synthesis
 - decrease permeability of capillary membranes, reducing swelling
 - They also reduce the effects of histamine
 - Attenuates fever mainly because cortisol reduces release of interleukin-1 from white blood cells.

Suppression of Immune System

- Decrease production of eoisinophils and lymphocytes
- Administration of large doses of cortisol causes significant atrophy of lymphoid tissue throughout the body
- Decrease immunity could be fatal in diseases such as tuberculosis
- Decrease immunity effect of cortisol is useful during transplant operations in reducing organ rejection.
- Cortisol increases the production of red blood cells

Functions - circulation

- Maintains body fluid volumes & vascular integrity
- Cortisol levels vary with water intake
- Cortisol has mineralcorticoid effect, Not as potent as aldosterone.
- BP regulation & cardiovascular function:
 - Sensitizes arterioles to action of noradrenaline (Permissive effect).
- Decreased capillary permeability
- Maintains normal renal function

Functions - continued

CNS responses:

- Negative feedback control on release of ACTH
- Modulates perception & emotion

Mineral metabolism:

Anti-vitamin D effect, reduces osteoblast differentiation

GIT:

Increases HCl secretion

Functions - developmental

Permissive regulation of fetal organ maturation

• Surfactant synthesis (phospholipid that maintains alveolar surface tension).

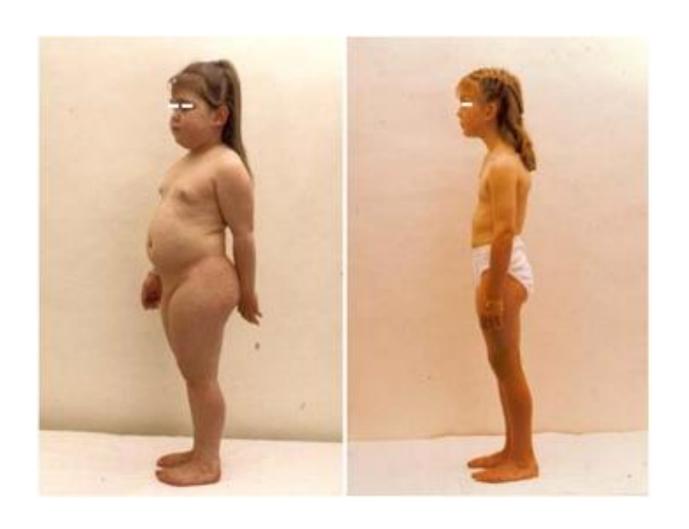
 Inhibition of linear growth in children due to direct effects on bone & connective tissue


Glucocorticoids and Stress:

- Without GCs, the body cannot cope with even mild stressors
- Fat & glucose metabolism
- Maintenance of the vascular response to norepinephrine
- Effects on CNS

- Cushing's syndrome results from continued high glucocorticoid levels
- 3rd 6th decade, 4 to 1 females
- Causes:
 - pharmocologic
 - pituitary adenoma 75-90%
 - adrenal adenoma, carcinoma
 - ectopic ACTH

Signs:


- Fat is deposited in the body trunk (central obesity)
- Buffalo hump
- Moon facies (subcutaneus fat in cheeks and submandibular)
- Purple striae
- Blood-glucose levels rises chronically, causing adrenal diabetes
- May cause beta cells to die

• Purple striae

treatment based on cause

Adrenocortical insufficiency

- primary causes, ie. Addison's disease
 - autoimmune disease, tumors, infection, hemorrhage, metabolic failure, ketoconazole
- secondary causes
 - hypopituitarism, suppression by exogenous steroids

Adrenocortical insufficiency

- symptoms, signs
 - fatigability, weakness, anorexia, nausea, weight loss, hyperpigmentation, hypotension, women loss of axillary and pubic hair
 - can lead to severe volume depletion and shock
 - Reduced cortisol results in poor blood glucose regulation
 - Patient cannot cope with stress
 - Adrenal crisis: asthenia, severe pains in the abdomen, vascular collapse....

Adrenocortical insufficiency

- treatment
 - glucocorticoid replacement, mineralocorticoid replacement