ENDOCRINE PHYSIOLOGY

PROF. ABDULMAJEED AL-DREES

ANTERIOR PITUITARY GLAND

ANTERIOR PITUITARY GLAND

 Hormones: **1- TSH 2- FSH** 3- LH **4-GH 5- PROLACTIN** 6-ACTH.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 11.6 Anterior Pituitary Hormones

Hormone	Target Tissue	Principal Actions	Regulation of Secretion
ACTH (adrenocorticotropic hormone)	Adrenal cortex	Stimulates secretion of glucocorticoids	Stimulated by CRH (corticotropin-releasing hormone); inhibited by glucocorticoids
TSH (thyroid-stimulating hormone)	Thyroid gland	Stimulates secretion of thyroid hormones	Stimulated by TRH (thyrotropin-releasing hormone); inhibited by thyroid hormones
GH (growth hormone)	Most tissue	Promotes protein synthesis and growth; lipolysis and increased blood glucose	Inhibited by somatostatin; stimulated by growth hormone-releasing hormone
FSH (follicle-stimulating hormone)	Gonads	Promotes gamete production and stimulates estrogen production in females	Stimulated by GnRH (gonadotropin- releasing hormone); inhibited by sex steroids and inhibin
PRL (prolactin)	Mammary glands and other sex accessory organs	Promotes milk production in lactating females; additional actions in other organs	Inhibited by PIH (prolactin-inhibiting hormone)
LH (luteinizing hormone)	Gonads	Stimulates sex hormone secretion; ovulation and corpus luteum formation in females; stimulates testosterone secretion in males	Stimulated by GnRH; inhibited by sex steroids

PROLACTIN

Lactotrophs.(15%)

• 198 AA.

Related to GH.

REGULATION OF SECRETION

Copyright @ 2010 by Saunders, an imprint of Elsevier Inc. All rights reserved.

SOURCES OF DOPAMINE

1- Dopaminergic neurons in the hypothalamus.

2- Dopaminergic neurons in the posterior pituitary.

3- Nonlactotrophs cells of the anterior pituitary.

Table 9-5 Factors Affecting Prolactin Secretion

Stimulatory Factors	Inhibitory Factors
Pregnancy (estrogen)	Dopamine
Breast-feeding	Bromocriptine (dopamine
Sleep	agonist)
Stress	Somatostatin
TRH	Prolactin (negative feedback)
Dopamine antagonists	

Copyright @ 2010 by Saunders, an imprint of Elsevier Inc. All rights reserved.

ACTION

1- Breast development.

2- Lactogenesis. (Lactose, lipid, casein) Parturition.

3- Inhibition of ovulation. GnRH

ABNORMALITIES

1- Prolactin deficiency.Failure to lactate.

2- Prolactin excess.

Galactorrhea.

Infertility.

Bromocriptine.

Thyrotrophs.(5%)

- Glycoproteins.
- α and β .
- Related to FSH and LH.

ABNORMALITIES

Hyperthyroidism.

Hypothyroidism.

REGULATION OF SECRETION

ACTION

1- Increase synthesis and secretion of thyroid hormones.

2- Trophic effect.

GROWTH HORMONE

Somatotropic hormone, somatotropin.

- Somatotrophs (20%)
- 191 AA.

• MW 22000 kD.

• GHRH (ventromedial nucleus).

Copyright @ 2010 by Saunders, an imprint of Elsevier Inc. All rights reserved.

GHRH — receptor — Gs protein —

Adenylyl cyclase and phospholipase C-

Somatostatin (SRIF) — receptor

Gi ——— inhibit generation of cAMP——

Decrease secretion.

Copyright © 2010 by Saunders, an imprint of Elsevier Inc. All rights reserved.

Copyright © 2010 by Saunders, an imprint of Elsevier Inc. All rights reserved.

SECRETION

Typical variations in growth hormone secretion throughout the day, demonstrating the especially powerful effect of strenuous exercise and also the high rate of growth hormone secretion that occurs during the first few hours of deep sleep.

• Pulsatile every 2H.

ACTION OF GROWTH HORMONE

Direct.

Skeletal muscles, liver and adipose.

Indirect (somatomedine IGF).

• 4500-7500 MW.

• Somatomedine C.

EFFECT ON CARBOHYDRATE

- Increase blood glucose.(Diabetogenic effect.)
- ([↑] gluconeogenesis)

Decrease glucose utilization in energy.

Increase in insulin.

Glucose Counter-regulatory Hormones: Effect on Fat and Muscle Cells

EFFECT ON PROTEIN

Increase protein synthesis.
a- Increase AA uptake.
b- Increase DNA synthesis.
c- Increase RNA synthesis.

- Decrease protein catabolism.

EFFECT IN FAT

1- Increase FFA.

2- FFA — Acetyl-CoA energy

EFFECT IN BONE AND CARTILAGE

1- Increase liner growth.

2- Increase metabolism in cartilage forming cells.

3- Increase proliferation of condrocytes.

4- Widening of the epiphyseal plate.

Figure 49-7 Comparison of weight gain of a rat injected daily with growth hormone with that of a normal rat.

Table 9-4 Factors Affecting Growth Hormone Secretion

Stimulatory Factors	Inhibitory Factors
Decreased glucose concentration	Increased glucose concentration
Decreased free fatty acid concentration	Increased free fatty acid concentration
Arginine	Obesity
Fasting or starvation	Senescence
Hormones of puberty	Somatostatin
(estrogen, testosterone)	Somatomedins
Exercise	Growth hormone
Stress	β-Adrenergic agonists
Stage III and IV sleep	Pregnancy
α-Adrenergic agonists	

TABLE 16.1 Pituitary Hormones: Summary of Regulation and Effects

HORMONE (CHEMICAL STRUCTURE AND CELL TYPE)

REGULATION OF RELEASE

TARGET ORGAN AND EFFECTS

EFFECTS OF HYPOSECRETION ↓ AND HYPERSECRETION ↑

Anterior Pituitary Hormones

Growth hormone (GH) (Protein, somatotroph) Stimulated by GHRH* release, which is triggered by low blood levels of GH as well as by a number of secondary triggers including hypoglycemia, increases in blood levels of amino acids, low levels of fatty acids, exercise, other types of stressors, and estrogens

Inhibited by feedback inhibition exerted by GH and IGFs, and by hyperglycemia, hyperlipidemia, obesity, and emotional deprivation via either increased GHIH* (somatostatin) or decreased GHRH* release

Liver, muscle, bone, cartilage, and other tissues: anabolic hormone; stimulates somatic growth; mobilizes fats; spares glucose

Growth-promoting effects mediated indirectly by IGFs Pituitary dwarfism in children
 Gigantism in children; acromegaly in adults

*Indicates hypothalamic releasing and inhibiting hormones:

GHRH = growth hormone-releasing hormone; GHIH = growth hormone-inhibiting hormone

Copyright © 2010 Pearson Education, Inc.

ABNORMALITIES

1- Hyposecretion of GH. Dwarfism.

Causes?.

where?

2- Hypersecretion.

- Often associated with tumor.
- Giganitsm.
- Acromegaly.

Octreotide.

Figure 14:5 Effects of normal and abnormal growth hormone secretion.

Figure 14:6 Acromegaly.

Figure 49-8 An acromegalic patient. (Courtesy of Dr. Herbert Langford.)

FSH AND LH

- Glycoproteins.
- Gonadotrophs (15%)
- α and β .
- Related to TSH.

SECRETION

FIGURE 10-9. Control of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion in females during the menstrual cycle. The follicular and luteal phases are characterized by negative feedback of estradiol and progesterone, respectively, on the anterior pituitary. Midcycle is characterized by positive feedback of estradiol on the anterior pituitary. GnRH, gonadotropin-releasing hormone.

- Cortictrophs.(15%)
- ACTH, MSH, β-endorphin.

• Preproopiomelanocortin (POMC).

Copyright @ 2010 by Saunders, an imprint of Elsevier Inc. All rights reserved.

Table 9-10 Factors Affecting ACTH Secretion

Stimulatory Factors	Inhibitory Factors
Decreased blood cortisol levels	Increased blood cortisol levels
Sleep-wake transition	Opioids
Stress; hypoglycemia; surgery; trauma	Somatostatin
Psychiatric disturbances	
ADH	
α-Adrenergic agonists	
β-Adrenergic antagonists	
Serotonin	

ACTION

 Stimulate synthesis and secretion of adrenal cortical hormones.

