The Endocrine Physiology

Posterior Pituitary

Dr. Khalid Alregaiey

Learning Objectives

- Describe the posterior pituitary relationship with the hypothalamus
- List the target organs and functional effects of oxytocin.
- Name the stimuli for oxytocin release in relation to its reproductive and lactation functions.
- List the target cells for vasopressin and explain why vasopressin is also known as antidiuretic hormone.
- Describe the stimuli and mechanisms that control vasopressin secretion.
- Identify disease states caused by a) over-secretion, and b) under-secretion of vasopressin and list the principle symptoms of each.

The Posterior Pituitary and Hypothalamic Hormones

- The posterior lobe is a downgrowth of hypothalamic **neural tissue**
- Has a neural connection with the hypothalamus (hypothalamic-hypothalamic-hypothalamic-hypophyseal tract)
- Nuclei of the hypothalamus synthesize oxytocin and antidiuretic hormone (ADH)
- These hormones are transported to the posterior pituitary

Pituitary (Hypophysis)

Posterior pituitary gland

- Does not synthesize hormones
- Consists of axon terminals of hypothalamic neurons

Antidiuretic Hormone (ADH)

(vasopressin)

• It is synthesized as pre-prohormone and processed into a nonapeptide (9 amino acids)

• ADH synthesized in the cell bodies of hypothalamic neurons(supraoptic nucleus)

• ADH is stored in the posterior pituitary

Receptors of ADH (vasopressin)

- There are 2 types of receptors for ADH:
 - V₁
 - V₂
- V1 receptors mediate vasoconstriction
- V2 receptors are located in the principle cells in distal convoluted tubule and collecting ducts in the kidneys

Mechanism of action of ADH

Control of ADH Release

• Osmotic pressure:

- Osmoreceptors in the hypothalamus:
- \uparrow osmotic pressure $\rightarrow \uparrow$ ADH secretion
- \downarrow osmotic pressure $\rightarrow \downarrow$ ADH secretion

Blood volume :

- **Baroreceptor** in carotid artery and aortic arch, and **Stretch receptors** in left atrium:
- \uparrow blood pressure $\rightarrow \downarrow$ ADH secretion
- \downarrow blood pressure $\rightarrow \uparrow$ ADH secretion

Regulation of ADH

Hypothalamus receives feedback from:

- Osmoreceptors
- Aortic arch baroreceptors
- Carotid baroreceptors
- Atrial stretch receptors

Any increase in osmolality or decrease in blood volume will stimulate ADH secretion from posterior pituitary.

Effects on Blood Vessels

Oxytocin

Synthesis of Oxytocin

 Oxytocin is synthesized in the cell bodies of hypothalamic neurons (paraventricular nucleus)

• Oxytocin is stored in the posterior pituitary

- Oxytocin is a strong stimulant of uterine contraction
- Regulated by a positive feedback mechanism
- This leads to increased intensity of uterine contractions, ending in birth
- Oxytocin triggers milk ejection ("letdown" reflex) Contracts the *myoepithelial cells* of the alveoli

Summary of posterior pituitary hormones actions

ADH Disorders

• Diabetes Insipidus:

Neurogenic (central): (failure of neurohypophysis to synthesize or secrete ADH)

Nephrogenic: (failure of the kidney to respond appropriately to ADH)

 Syndrome of Inappropriate Antidiuretic Hormone (SIADH)

- DI is a disorder resulting from deficiency of anti-diuretic hormone (ADH) or its action and is characterized by the passage of copious amounts of dilute urine.
- It must be differentiated from other polyuric states such as primary polydipsia & osmotic duiresis. Central DI is due to failure of the pituitary gland to secrete adequate ADH.

DIABETES INSIPIDUS / 2

- Nephrogenic DI results when the renal tubules of the kidneys fail to respond to circulating ADH.
- The resulting renal concentration defect leads to the loss of large volumes of dilute urine. This causes cellular and extracellular dehydration and hypernatremia.

CAUSES OF CENTRAL DI

- IDIOPATHIC (30% OF CASES)
- Benign or malignant tumors 25%
- INFECTIONS (ENCEPHALITIS, TB, etc)
- SKULL SURGERY
- TRAUMA

CAUSES OF CENTRAL DI (2)

- AUTOIMMUNE ASSOCIATED WITH THYROIDITIS
- FAMILIAL: 2 TYPES AD & X-LINKED INHERITANCE
- WOLFRAM SYNDROME (ALSO KNOWN AS DIDMOAD SYNDROME) CHARACTERIZED BY DI,
 DM, NERVE DEAFNESS AND OPTIC ATROPHY.

CAUSES OF NEPHROGENIC DI

- PRIMARY FAMILIAL: X-LINKED RECESSIVE THAT IS SEVERE IN BOYS & MILD IN GIRLS
- SECONDARY TO:
- CHRONIC PYELONEPHRITIS
- HYPOKALEMIA
- HYPERCALCEMIA
- SICKLE CELL DISEASE
- **PROTEIN DEPRIVATION**

CLINICAL FEATURES

- POLYURIA, POLYDIPSIA & THIRST
- NOCTURIA OR NOCTURNAL ENURESIS
- HYPERNATREMIC DEHYDRATION
- ANOREXIA, CONSTIPATION
- HYPERTHERMIA & LACK OF SWEATING

TREATMENT

- DESMOPRESSIN (DDAVP) A SYNTHETIC ANALOG IS SUPERIOR TO NATIVE AVP BECAUSE:
- IT HAS LONGER DURATION OF ACTION (8-10 h vs 2-3 h)
- MORE POTENT
- ITS ANTIDIURETIC ACTIVITY IS 3000 TIMES GREATER THAN ITS PRESSOR ACTIVITY

TREATMENT OF NEPHROGENIC DI

- PROVISION OF ADEQUATE FLUIDS & CALORIE
- LOW SODIUM DIET
- DIURETICS
- HIGH DOSE OF DDAVP
- CORRECTION OF UNDERLYING CAUSE