Color Vision

by

Prof/Faten zakareia
 King Saud University College Of Medicine Physiology Dept

Objectives

*Define color vision
*Identify and describe the *mechanism of colour vision and the three types of cones, including the range of spectral sensitivity and color blindness
*Identify color vision theory
*Describe the items needed for any color perception
*Compare different types of color
blindness

Mistory of color vision

Newton (1704) used a prism to show that sunlight was composed of light with all colors in the rainbow. He defined it as the spectrum.

COLOR VISION

- It the ability to discriminate between different colors.
1- there are 3 primary colors(blue- red- green) sensed by cones in fovea \& appreciated within photopic vision.
2- sensation of extraspectral colors as white, yellow, orange, purple, can be produced by mixing properties of the blue $\& r e d \mathscr{A}$ green in different combinations.
3- black means absence of light (not darkness because in dark we do not see black only)
-Colors have three attributes hue, intensity, and saturation (degree of freedom from dilution with white).
-For any color there is a complementary color that, when properly mixed with it, produces a sensation of white
-Black is the sensation produced by the absence of light, but it is probably a positive sensation because the blind eye does not "see black;" rather, it "sees nothing."
* Color vision theory : (Young- Helmholtz theory)

1- we have 3 kinds of cones each has a specific photopigment (rhodopsin)\& is sensitive to one of the 3 primary colors
*a- Blue cone system:- has \underline{S} pigment (blue sensation pigment) which respond to short wave length (440 nm senses the blue color)
*b- Green cone system:- has M pigment (green sensation pigment) which respond to middle wave length (535 nm senses the green color $\&$ less to yellow) $\&$ absorb light at the green portion.
c- Red cone system:- has \underline{L} pigment (red sensation pigment) which respond to large wave length at or
$>535 \mathrm{~nm}$ so senses the red $\&$ yellow color \& absorb light at the red portion.

Cone wavelength ranges

| Long-
 wavelength
 cone
 (responds
 well to
 red or yellow) | Medium-
 wavelength
 cone
 (responds
 best to green, | Short-
 less to yellow)
 colene
 (responds
 best to
 blue) |
| :---: | :---: | :---: | :---: | :---: |
| Excitatory | | |
| synapse | | |

2- sensation of any color determined by:

a- wave length of light

b- amount of light absorbed by each type of cones
c- frequency of impulses from each cone system to ganglion cells which is determined by wave length of light.

3- each cone system respond to its color at a lower threshold than needed to sense other colors (red cones respond to red or yellow color at a lower threshold than to green color)

5- perception of white is due to equal stimulation of blue \& red \& green cones. There is no wave length corresponds to white, white is a combination of all wave lengths

* PERCEPTION OF WHITE LIGHT

- there is no single wavelength of light corresponding to white; instead, white is a combination of all the wavelengths of the spectrum.
- as can be seen in this vector diagram white occupies the middle of the vector

Light absorption by the pigments of three color-receptive cones of human retina.

Cone wavelength ranges

Cone wavelength ranges

Photopic vision (CONES)

Cone pigments: three kinds

* \#- Color vision is coded by :-
*--different responses in ganglion cells that depends upon the wave length of stimulus which determine frequency of impulses in ganglion cells
* - the color perception in the brain depends on the amount of activity in each of the 3 cone systems as mentioned above.
-6-perception of orange
- is due to stimulation of 99% of red
cones \& 42% of green cones \& 0% of blue cones(so râtio is 99:42: 0)
- 7--
- is due to stimulation of 50% of red cones \& 50% of green cones \& 0% of blue cones(so rătio is 50:50: 0)
- 8 -perception of blue
- is due to stimulation of 0% of red cones \& 0% of green cones 497% of blue cones(so ratio is 0:0: 97)

Spectral sensitivity of a cone.
 Vhat is the advantage of colour vision?

Colour is important for distinguishing an object from its background.

color

red cones see

Test for Color Blindness

The above has been reproduced from Ishihara's Tests for Colour Blindness published by KANEHARA \& CO., LTD. Tokyo, Japan, but tests for colour blindness cannot be conducted with this material. For accurate testing, the original plates should be used.

ISHIHARA CHARTS, WHICH ARE PLATES CONTAINING FIGURES MADE UP OF COLORED SPOTS ON A BACKGROUND OF SIMILARLY SHAPED COLORED SPOTS.

THE FIGURES ARE INTENTIONALLY MADE UP OF COLORS THAT ARE LIABLE TO LOOK THE SAME AS THE BACKGROUND TO AN INDIVIDUAL WHO IS COLOR BLIND.

SOME COLOR-BLIND INDIVIDUALS ARE UNABLE TO DISTINGUISH CERTAIN COLORS, WHEREAS OTHERS HAVE ONLY A COLOR WEAKNESS.

The effect of mixing different wavelengths of light

*COLOR BLINDNESS:-

- There is gene for rhodopsin on chromosome(3)
*- There is gene for blue sensitive S cone pigment on chromosome(7)
*- There is gene for red $\&$ green sensitive cone pigment on x chromosome.
*- when a single group of color receptive cones is absent (due to absence of there gene) the person can not see or distinguish some colors from others

*- red - green blindness:-

* -Green \& red cones see different colors between wave length 525-675 nm \& distinguish them.
*-If either of these cones are absent, the person can not distinguish 4 colors (red - green- yellow- orange)\& he can not distinguish red from green (primary colors) so called * (red - green blindness).
-It is x - linked disease transmitted from females to their male sons, never occure in females as they have 2 x chromosomes
- Males have one $\mathbf{x} \&$ one \mathbf{y} chromosome so if this one x chromosome miss the gene for color vision, he will get red-green color blindness(their gene is on x chromosome).
-Females show the disease only if both x chromosomes lack the gene
- Females from color blind fathers are carriers transmit the disease to $1 / 2$ of their sons.
*Trichromats :- have 3 cone pigments(normal or have slight weakness in detecting red or green or blue color
* Dichromats:- have only 2 cone pigments systems only so he is completely blind to red or green or blue (so they may have protanopia, deuteranopia, or tritanopia) they get color by mixing only 2 of the primary colors.

Monochromats :- have only one cone system or loss of all so see only black or grey or have no color perception.
*Nopia = blindness, nomaly =weakness

* 1-Protanopia(red- blindness) :- no red cones system so person has shortened spectrum wave length,
*if only weakness in red color vision is called protanomaly.

2-deutranopia (green - blindness) :- no green cones system -so person see only long \& short wave length)

- If only weakness in green color vision is called deutranomaly

3-tritanopia (blue - blindness) :- no blue cones system, if only weakness in blue color vision is called tritanomaly

Color Blindness -cont.

- Anamoly ...weakness
 - Anopia Total loss

\square Protanopic - Mranopic Dichromats
 \square

Colour blindiness.

Each cone type contains a different light sensitive photo pigment. Colour blindness occurs when there is a defect in the genes that produce these photo pigments. Various combinations of defects can occur.

1) Missing one cone type
2) Missing two cone types
3) Missing all three cone types (vision is limited to the rods)
4) A cone type is made with a photo pigment different from normal.

Thank you for

 fisteniVisit www.bubblegumonline.com © 1999 AGC, Inc.

