

Hearing

Lecture Objectives:

- Structure and functions of the ear
- External Middle Internal ears
- Sound characters
- Auditory pathway
- Air conduction
- Bone conduction
- Conductive and perceptive deafness
- Hearing tests

Functions of the ear

Hearing (Parts involved):
 External ear
 Middle ear
 Internal ear
 Equilibrium sense (Parts involved):
 Internal ear

.

FIGURE 6-33 Anatomy of the ear

Anatomical consideration

Outer ear:

 Pinna
 External canal
 Tympanic Membrane (funnel shaped, pointing inward)

Anatomy of the ear

Anatomical consideration

Middle ear:
Air filled cavity
Three bones:

- Mallaus
- Incus
- Stapes (with its foot sitting on the oval window of the inner ear)

Anatomical consideration

Inner ear:Bony and membranous labyrinth

Nature of Sound

Sound is produced from alternate compression and rarefaction of air molecules by vibrating body

Characteristics of sound

- I- Pitch (Tone) depend on No. of cycle/sec. Human ear can detect sound waves with freq.. 20-20000 cycle /sec
- 2- Intensity (Loudness) depend on amplitude
- 3- Quality depend on the over tone or interference

Functions of the ear

External ear:
 Act as funnel to collect sound
 Sound localisation (front, back, high, low)
 Protection

FIGURE 6-33 Anatomy of the ear

Functions of the ear

- Middle ear: it is a space between tympanic membrane and the inner ear (opens via Eustachian tube into nasopharynx)
- Content:
 - 1- Air
 - 2- Ossicles
 - Malleus
 - Incus
 - Stapes
 - 3- Muscles
 - 1- Tensor tympani
 - 2- Stepedius

FIGURE 6-33 Anatomy of the ear

Functions of the middle ear

1- Ossicles:

- Manbrium of the malleus attached to the back of the tympanic membrane and its short process attached to the incus.
- The incus then articulates with the head of the stapes, and its foot plate attached to the oval window

Functions of the middle ear

2- Muscles:

- Muscles contract reflexly in response to loud sound (over 70dB)
- Contraction of the tensor tympani pulls the manubruim & makes the tympanic m. tens. Thus decreasing the vibration.
- Contraction of the stapeduis pull the foot plate outward so that vibration are reduced
- (protection from constant loud noise, but not sudden noise, latency of 40-80 msec.

Transmission of sound through the middle ear

- sound waves vibrate the tympanic m.
- Tympanic m moves the handle of malleus
- Incus moves
- Stapes move in & out of the oval window. The pressure transmitted through cochlea cause stimulation of hair cells in the organ of corti, which will stimulate the auditory nerve

FIGURE 6-33 Anatomy of the ear

Middle ear magnifying effect

- 1- The force from a large surface area (Tympanic m.) are concentrated to a small (oval window) the ratio is 17=1
- 2- Lever action of ossicles = the lever action of ossicles increase the force of movement 1.3 times
- \blacktriangle the total increase 17 X 1.3 = 22 times

FIGURE 6-33 Anatomy of the ear

Inner ear

Anatomy:

- Cochlea (snail like, coiled tubular system laying deep in the temporal bone)
- Bony labyrinth
- Membranous labyrinth

Cochlea

- It is a system of three coiled tubes through its length
 The basilar m. & the reissners m divide it into three canals:
 - Scala Vestibuli
 - Scala Media
 - Scala Tympani

and the second is backed as a second s

Composition

Scala Vestibuli:Scala Tympani:Scala Media :

Na high K lowNa high K lowNa low K high

Organ of Corti Located (resting) on the basilar m. Contain inner & outer hair cells Extend from base to apex

Hair cells

- Steroclia extend from the top
- Arrangement:
 - Three rows of outer hair cells (attached to the reticular lamina or tectorial m.)
 - One row of inner hair cells (not attached to tectorial m.)

Function of inner hair cells

- Striocellia not embedded in tectorial m. but bent by fluid movement under the tectorial m.
- They are primary receptors for sound, transducing fluid movement in cochlea into action potential in the auditory nerve

Function of the outer hair cells

- Large number, but stimulate only small fraction of nerve fibres in the cochlear nerve
- If damaged, significant loss of hearing (they control the sensitivity of inner hair cells to particular sound frequency)

Receptors & Endocochlear potentials

- Sound transmission into the inner ear cause upper & lower movements of the reticular m. (tectorial m.)
- »»»»» produce bending of steriocillia of the hair cells alternatively open & close cation channels at the tip of the steriocillia

»»»»» (inward current) depolarization
 »»»»» (outward current)
 hyperpolarisation
 »»»» the net results is depolarization

Production of cells receptors potentials
 »»»» release of neurotransmitter
 »»»» production of action potentials

The Central Auditory pathway

This pathway begins in the organ of corti
 End in the primary auditory cortex (are 41& 42, superior temporal gyrus in the temporal lobe of the brain)

Fibres end in the auditory area, where it is heard, then interpretation occurs in the auditory association areas (wernikes area)

The Central Auditory pathway

There is a bilateral cortical connection of auditory area

 Thus damage to one side only slightly reduces hearing

Sound localization

Differences in the time arrival of the sound wave at the ears (time-lag)
 Differences in the loudness

Masking effect

- Presence of background noise affect the ability to hear another sound, due to some receptors are in refractory period
- Masking is more clear if two sound are having the same frequencies

Exposure to sound intensity above 80dB may damage outer hair cells

Conduction of sound wave

Air conduction:

 Normal situation of hearing, sound travel in air causes vibration of Tympanic m., transmitted by ossicles to the oval window

Conduction of sound wave

Bone conduction:

Sound cause vibration of skull bones directly transmitting the sound vibration to the cochlea (eg when placing tuning fork on the head or mastoid process)

Conductive deafness

- Impairment of sound transmission through external or middle ear due to:
 Wax
 - Repeated infection
 - Perforated drum
 - Destruction of ossicles
 - Osteosclerosis (pathological fixation of stapes on the oval window)

Conductive deafness

- All sound frequencies are equally affected
- Bone conduction is better than air conduction

Perceptive deafness

Due to congenital or damage to cochlea or auditory nerve pathway due to:

- Toxins (antibiotics, gentamycine)
- Inflammation
- Vascular
- Tumour
- Both air and bone conduction are affected

Test of hearing

AudiometerWeber testRinnes test

Audiometer

Weber test

tuning fork is placed on the patient's forehead (or in the middle line)

Rinnes test:

- The base of the tuning fork placed on mastoid process until the sound is not heard
- Then the prongs of the fork held in air near the ear

Rinnes test

Normal subject continue to hear near ear (positive test)

 If not reveres the test (if heard near the mastoid process, negative test)

