

Khaleel Alyahya, PhD, MEd King Saud University School of Medicine @khaleelya

OBJECTIVES

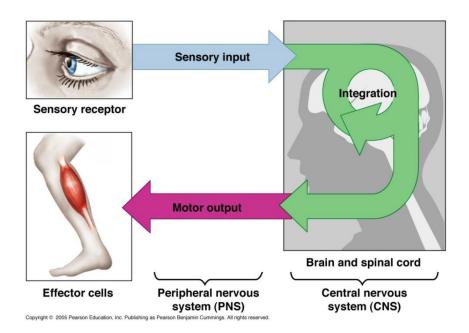
At the end of the lecture, students should be able to:

- □ Describe the external anatomy of the spinal cord.
- □ Describe the internal anatomy of the spinal cord.
- Describe the spinal nerves: formation, branches & distribution via plexuses.
- □ Define Dermatome and describe its significance.
- □ Describe the meninges of the spinal cord.
- Define a reflex and reflex arc, and describe the components of the reflex arc.

FUNCTIONS

The nervous system has 3 functions:

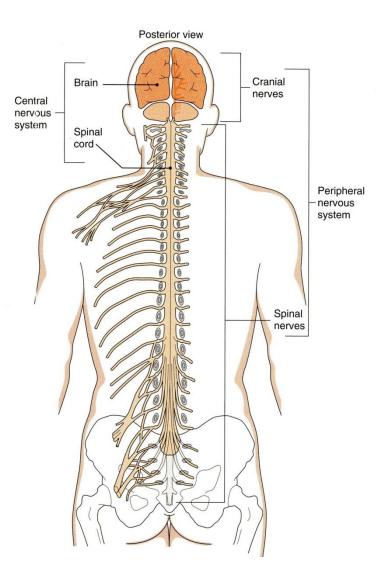
Collection of Sensory Input


Identifies changes occurring inside and outside the body by using sensory receptors. These changes are called stimuli

> Integration

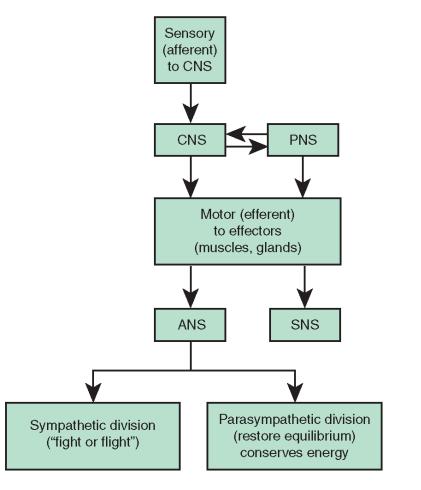
Processes, analyses & interprets these changes and makes decisions

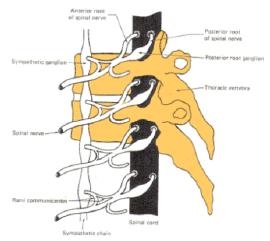
> Motor Output


It then effects a response by activating muscles or glands (effectors) via motor output

ORGANIZATION

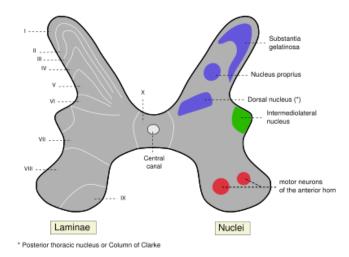
STRUCTURAL

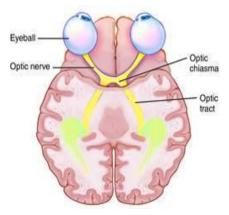

- Central Nervous System (CNS)
 - Brain & Spinal Cord
- **D** Peripheral Nervous System (PNS)
 - Nerves & Ganglia
 - Cranial nerves
 - Spinal nerves


ORGANIZATION

FUNCTIONAL

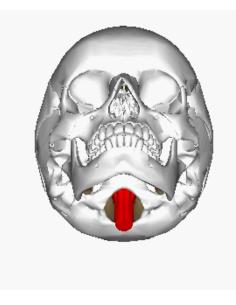
- **Sensory Division (Afferent)**
- **Motor Division (Efferent)**
 - Autonomic
 - Somatic

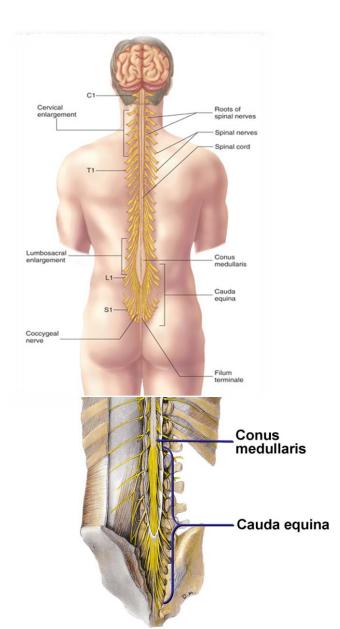

CNS = Central nervous system PNS = Peripheral nervous system ANS = Autonomic nervous system SNS = Somatic nervous system


Ganglion A group of neurons outside the CNS

Nerve A group of nerve fibers (axons) outside the CNS

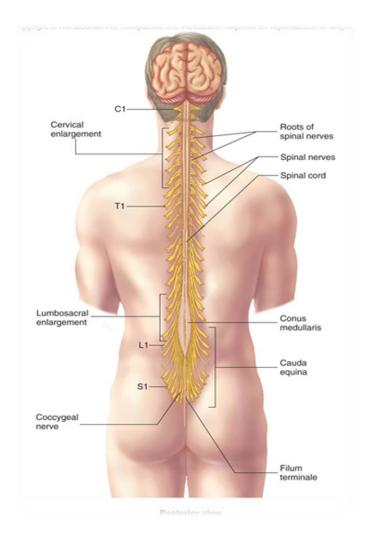
Nucleus A group of neurons within the CNS




Tract A group of nerve fibers (axons) within the CNS

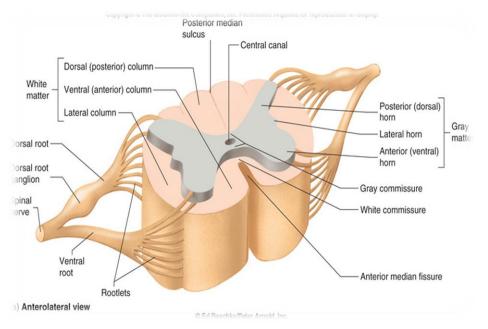
- □ The main pathway for information connecting the brain and peripheral nervous system.
- □ It is elongated, cylindrical, suspended in the vertebral canal and protected by vertebrae
- □ Surrounded by the meninges and cerebrospinal fluid (CSF).
- □ The primary function of spinal cord is a transmission of neural signals between the brain and the rest of the body.
 - Sensory
 - Motor
 - Local reflexes

- Extends from foramen magnum to 2nd lumbar vertebra.
- **Continuous above with the** *medulla oblongata***.**
- □ The tapered inferior end forms *conus medullaris*.
- □ It is connected to the coccyx by a non-neuronal cord called *Filum Terminale*.


Gives rise to 31 pairs of spinal nerves
The bundle of spinal nerves extending inferiorly from *lumbosacral enlargement* and *conus medullaris* surround the *filum terminale* and form *cauda equina*

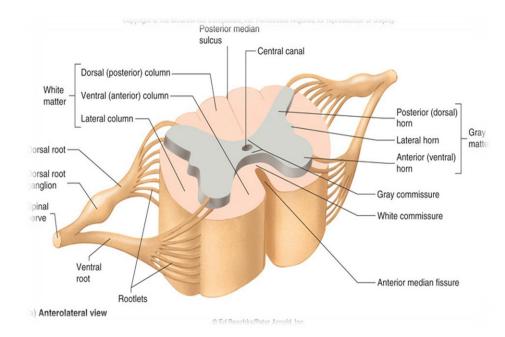
Gamma Segmented

- 8 Cervical
- 12 Thoracic
- 5 Lumbar
- 5 Sacral
- I Coccygeal



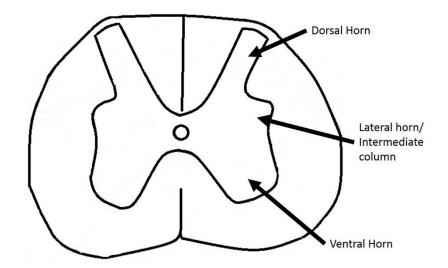
- □ Has two enlargements:
 - Cervical Enlargement: supplies upper limbs.
 - Lumbosacral Enlargement: supplies lower limbs.

CROSS SECTION OF SPINAL CORD


- □ The spinal cord is incompletely divided into two equal parts, anteriorly by a short, shallow median fissure and posteriorly by a deep narrow septum, the posterior median sulcus.
- □ Composed of grey matter in the center surrounded by white matter supported by neuroglia.
- Commissures: connections between left and right halves
 - Gray with central canal in the center.
 - White.
- Roots: spinal nerves arise as rootlets then combine to form roots
 - Dorsal (posterior) root has a ganglion
 - Ventral (anterior)
 - Two roots merge laterally and form the spinal nerve

GREY MATTER

- □ The arrangement of grey matter in the spinal cord resembles the shape of the letter H.
- **Having:**
 - two posterior
 - two anterior
 - two lateral horns/columns.
- **Consists of:**
 - nerve cell bodies and their processes
 - neuroglia
 - blood vessels



GREY MATTER

- ☐ The nerve cells are multipolar, and are of <u>three</u> main categories:
- Sensory neurons (Tract cells)
 - receive impulses from the periphery of the body and whose axons constitute the ascending fasciculi of the white matter.
 - Iocated in the dorsal horns.
 - Lower motor neurons
 - transmit impulses to the skeletal muscles.
 - located in the ventral horns
 - similar neurons in the lateral horn are the preganglionic neurons of the autonomic system.

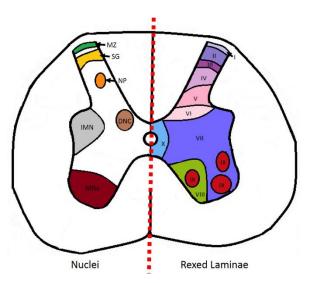
Interneurons (connector neurons)

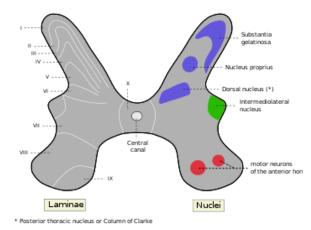
 linking sensory and motor neurons, at the same or different levels, which form spinal reflex arcs.

SPINAL CORD NUCLEI

The main groups of neuron cell bodies in the spinal cord are the:

Marginal Zone (MZ)(Posterior Marginalis)

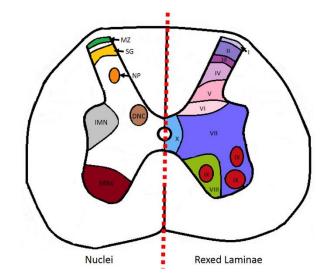

- \circ located at the tip of the dorsal horn.
- \circ important for relaying pain and temperature sensation to the brain.
- Substantia Gelatinosa (SG)
 - located at the top of the dorsal horn.
 - Composed of large neurons.
 - Extends throughout the length of spinal cord.
 - important for relaying pain, temperature and light touch sensation to the brain.

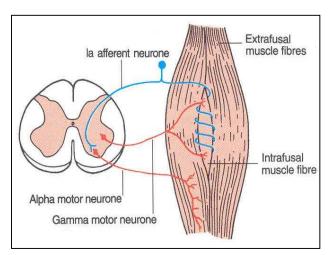

Nucleus Proprius (NP)

- \circ located in the neck of the dorsal horn.
- Composed of large neurons.
- Extends throughout the length of spinal cord.
- o relays mechanical and temperature sensation to the brain.

Dorsal Nucleus of Clarke (DNC)

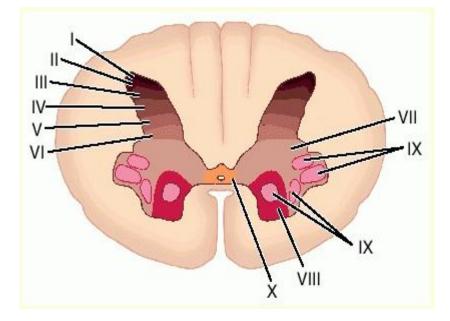
- the most dorso-medial nuclei.
- Composed mostly of large neurons
- Extends from C8 to L3-4 segments
- \circ relays unconscious proprioceptive information to the brain.
- Only found in spinal segments C8 to L3.


SPINAL CORD NUCLEI


☐ Interomediolateral Nucleus (IMN)

- \circ located in the intermediate column and lateral horn.
- relays sensory information from viscera to the brain, and autonomic signals from the brain to the visceral organs.
- Extends from T1 to L2-3 segments:
 - Give rise to preganglionic sympathetic fibers
- Extends from S2-4 segments:
 - Give rise to preganglionic parasympathetic fibers

□ Lateral Motor Neurons and Medial Motor Neurons (MNs)


- o located in the ventral horn.
- Composed of motor neurons that innervate visceral and skeletal muscles.
- Are of Two types:
 - > Large multipolar cells
 - Whose axons pass out in the ventral roots of spinal nerves as alpha efferents which innervate extrafusal muscle fibers of skeletal muscles.
 - Less numerous smaller multipolar cells
 - Whose axons pass out in the ventral roots of spinal nerves as gamma efferents which innervate intrafusal muscle fibers of neuromuscular spindles

NEURONAL ARCHITECTURE OF SPINAL GREY MATTER

- Cells of the same type are clustered into groups, which occur in long columns
- □ In transverse section, these columns appear as layers, especially within the dorsal horn
- □ These layers are called the laminae of Rexed that are numbered by Roman numerals, starting from the tip of the dorsal horn and moving ventrally into the ventral horn.
- □ The Rexed laminae comprise a system of ten layers of grey matter (I-X), identified in the early 1950s by *Swedish neuroscientist*.

REXED LAMINAE

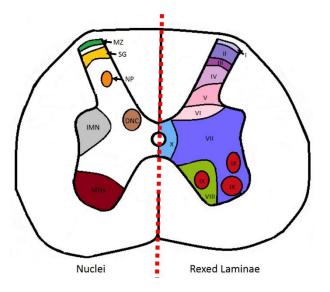
Lamina I

- o tip of the dorsal horn
- o cells respond to noxious or thermal stimuli
- \circ sends information to the brain by the contralateral spinothalamic tract
- corresponds to the marginal zone

Lamina II

- Involved in sensation of noxious and non-noxious stimuli, and modulating sensory input to contribute to the brain's interpretation of incoming signals as painful, or not.
- \circ Sends information to Lamina III and IV
- Corresponds to substantia gelatinosa.

Lamina III


- \circ Involved in proprioception and sensation of light touch.
- \circ $\,$ Cells in this layer connects with cells in layers IV, V and VI.
- Partially corresponds to nucleus proprius

Lamina IV

- \circ Involved in non-noxious sensory information relay and processing.
- Cells connect with those in lamina II
- Partially corresponds to nucleus proprius

Lamina V

- Relays sensory, including nociceptive (potentially painful), information to the brain via the contralateral and spinothalamic tracts
- Receives descending information from the brain via the corticospinal and rubrospinal tracts.

REXED LAMINAE

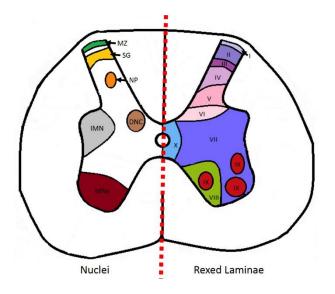
Lamina VI

- Contains many small interneurons involved in spinal reflexes
- Receives sensory information from muscle spindles (involved in proprioception).
- Sends information to the brain via ipsilateral spinocerebellar pathways

Lamina VII

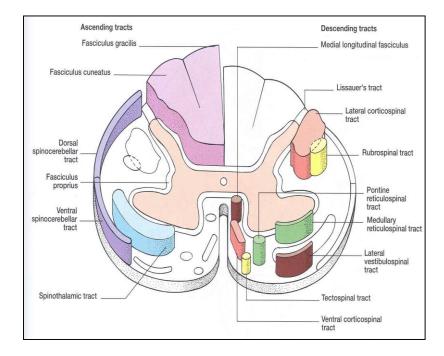
- Large, heterogenous zone that varies through the length of the spinal cord.
- Receives information from Lamina II to VI, and from viscera
- Relays motor information to the viscera
- \circ Gives rise to cells involved in the autonomic system.
- o Dorsal nucleus of Clarke is part of Lamina VII

Lamina VIII

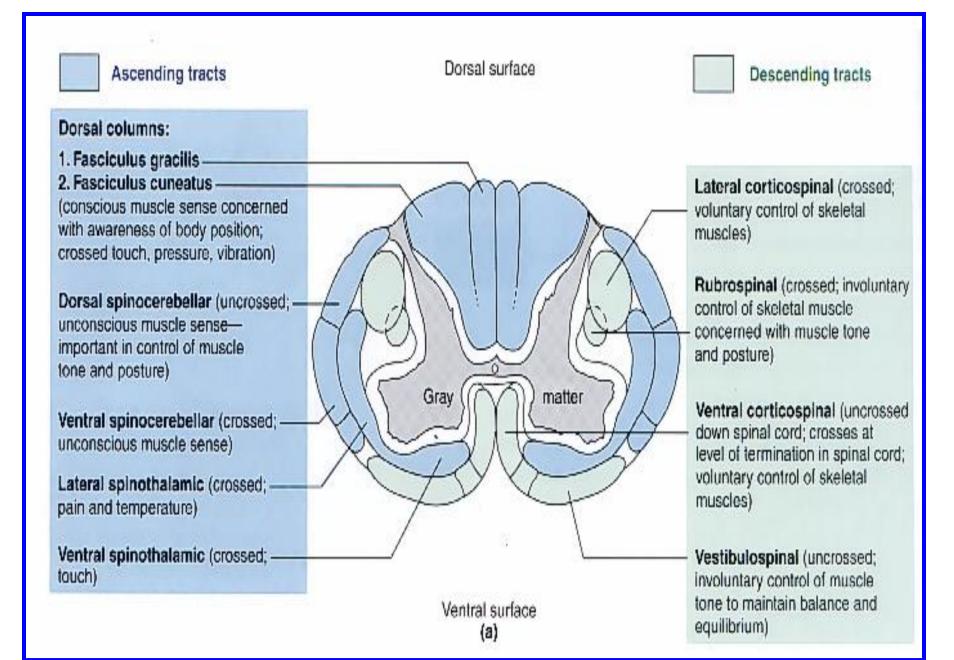

- Varies depending on spinal cord level, but is most prominent in cervical and lumbar enlargements.
- Cells are involved in modulating motor output to skeletal muscle.

Lamina IX

- Size and shape varies between spinal cord levels.
- Distinct groups of motor neurons that innervate skeletal muscle.


Lamina X

- Surrounds the central canal the grey commissure.
- Axons decussate (cross over) from one side of the spinal cord to the other.

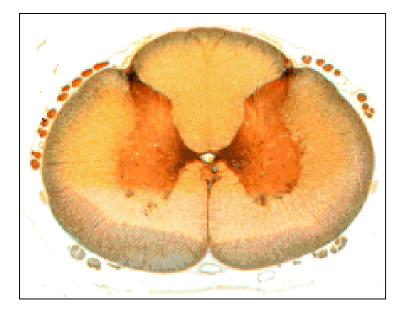


WHITE MATTER

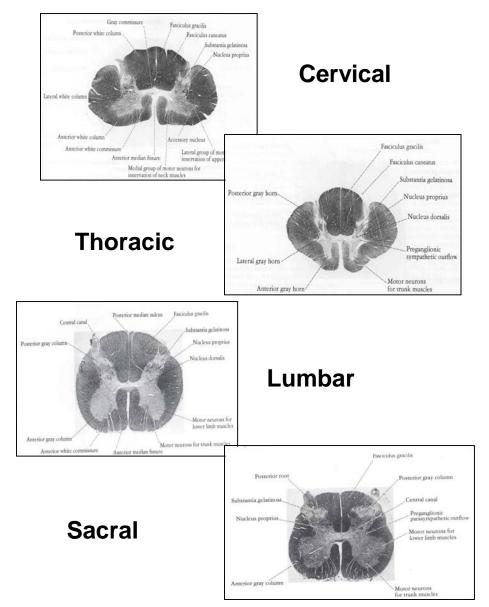
- □ Consists of mixture of nerve fibers, neuroglia and blood vessels.
- White color is due to high proportion of myelinated nerve fibers
- □ The white matter of the spinal cord is arranged in columns/funiculi; *anterior*, *posterior and lateral*.
- ☐ The nerve fibers are arranged as bundles, running vertically through the cord.
- □ A group of nerve fibers (axons) that share a common origin, termination and function form a tract or fasciculus
- □ These tracts are formed by sensory nerve fibers ascending to the brain, motor nerve fibers descending from the brain and fibers of connector neurons.
- □ Tracts are often named according to their points of origin and destination, e.g. *spinothalamic*, *corticospinal*.

Depending on their function, the spinal tracts are divided into ascending and descending tracts

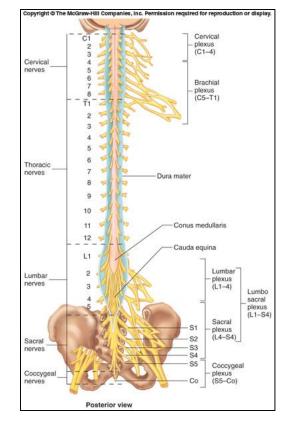
COMMISSURES OF THE SPINAL CORD

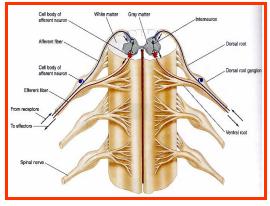

Grey Commissure:

- Transverse bridge of grey matter connecting the anterior and posterior gray horns on each side
- Is pierced by the central canal that divides it into anterior and posterior parts
- **White Commissure:**
- Lies ventral to the gray commissure
- Mainly contains decussating nerve fibers

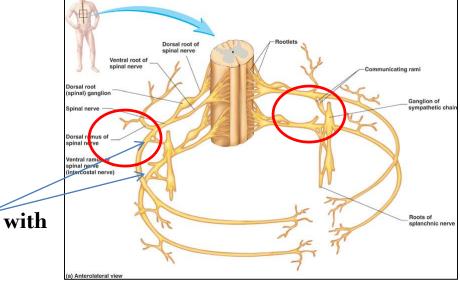

CENTRAL CANAL

- □ The cerebrospinal-filled space that runs longitudinally through the entire length of the spinal cord.
- □ Lined by ependyma (ciliated columnar epithelium)
- □ Continuous with the ventricular system of the brain
- □ Superiorly opens into the 4th ventricle
- □ Inferiorly in the conus medullaris, it expands into the fusiform terminal ventricle and terminates below at the root of filum terminale

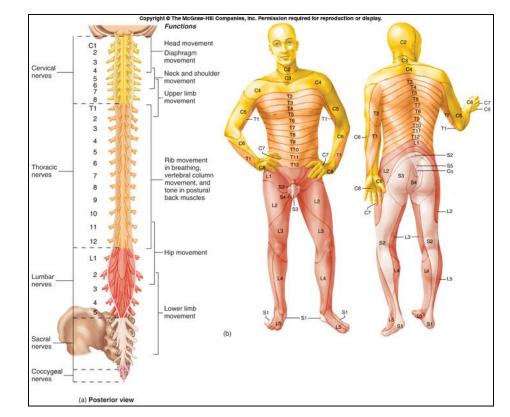

REGIONAL DIFFERENCES


- □ Although the general pattern of gray matter is the same throughout spinal cord, regional differences are apparent in transverse sections
- □ The amount of white matter increases in a caudal-to-cranial direction because fibers are added to ascending tracts and fibers leave descending tracts
- □ The gray matter is in increased volume in cervical & lumbosacral enlargements for innervation of upper & lower limbs
- ☐ The lateral horn is characteristics of thoracic and upper lumbar segments

SPINAL NERVES


- **Thirty-one pairs of spinal nerves**
- □ First pair exit vertebral column between skull and atlas, last four pairs exit via the sacral foramina and others exit through intervertebral foramina
- □ Eight pair cervical, twelve pair thoracic, five pair lumbar, five pair sacral, one pair coccygeal
- □ Each spinal nerve arises as rootlets which then combine to form dorsal (posterior) & ventral (anterior) roots.
- □ Two roots merge laterally and form the spinal nerve.
- Dorsal (posterior) root has a ganglion (dorsal root/sensory ganglion) that contains the cell bodies of the sensory neurons
- Each spinal nerve then divides into a smaller dorsal and a larger ventral ramus

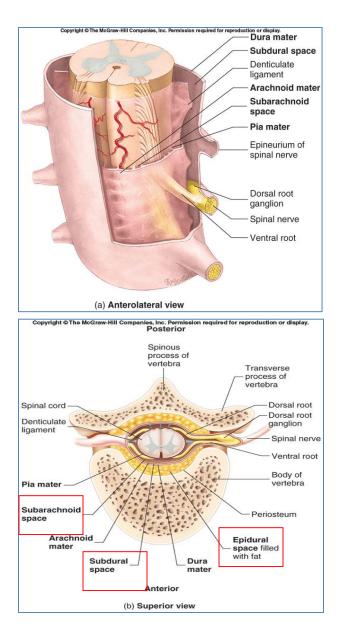
BRANCHES OF SPINAL NERVES


- Dorsal Ramus: innervate deep muscles of the trunk responsible for movements of the vertebral column and skin near the midline of the back.
- ❑ Ventral Ramus: what they innervate depends upon which part of the spinal cord is considered.
 - Thoracic region: form intercostal nerves that innervate the intercostal muscles and the skin over the thorax
 - Remaining spinal nerve ventral rami (roots of the plexus): form five plexuses (intermingling of nerves).
- Ventral rami of C1-C4= cervical plexus
- Ventral rami of C5-T1= brachial plexus
- Ventral rami of L1-L5= lumbar plexus
- Ventral rami of L4-S4= sacral plexus
- Ventral rami of S4 & S5= coccygeal plexus

• Communicating Rami: communicate sympathetic chain of ganglia.

DERMATOMES

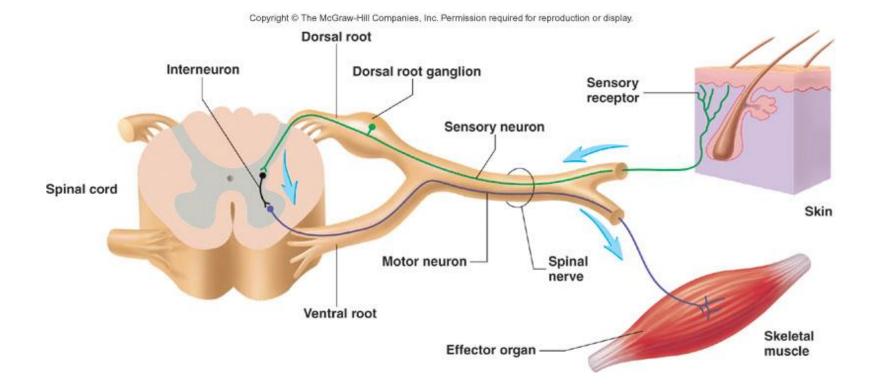
- Dermatome is a segment of skin supplied by one spinal nerve
- **Cutaneous areas supplied by adjacent spinal nerves overlap.**
- □ There is therefore little or sensory loss after interruption of a single spinal nerve or dorsal root

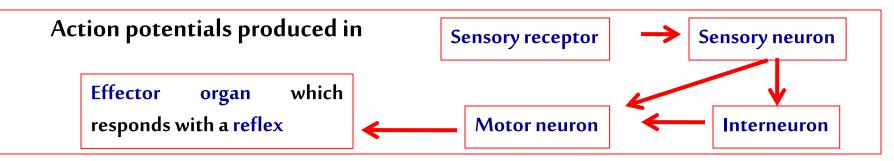


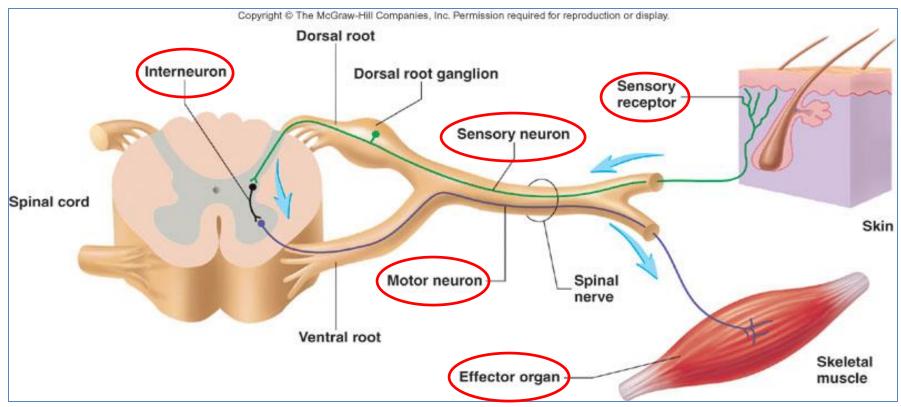
SPINAL MENINGES

- Connective tissue membranes surrounding spinal cord and brain
 - Dura mater: continuous with epineurium of the spinal nerves
 - Arachnoid mater: thin and wispy
 - Pia mater: bound tightly to surface of brain and spinal cord.
 - Forms the filum terminale, which anchors spinal cord to coccyx and the denticulate ligaments that attach the spinal cord to the dura mater

Spaces


- Epidural: Contains blood vessels, connective tissue and fat.
- Subdural: Contains serous fluid
- Subarachnoid: Contains CSF and blood vessels within web-like strands of arachnoid tissue


REFLEX & REFLEX ARC


A reflex is a rapid, involuntary, stereotyped pattern of response brought by a sensory stimulus

A neural pathway mediating the reflex actions is called reflex arc.

COMPONENTS OF A REFLEX ARC

CLINICAL SIGNIFICANCES

- □ Spinal cord injuries can be caused by trauma to the spinal column (stretching, bruising, applying pressure, severing).
- □ Usually, victims of spinal cord injuries will suffer loss of feeling in certain parts of their body.
- □ In milder cases, a victim might only suffer loss of hand or foot function.
- □ More severe injuries may result in paraplegia, tetraplegia (also known as quadriplegia), or full body paralysis below the site of injury to the spinal cord.
- Spinal shock and neurogenic shock can occur from a spinal injury.
- ❑ Spinal shock is usually temporary, lasting only for 24-48 hours, and is a temporary absence of sensory and motor functions.
- Neurogenic shock lasts for weeks and can lead to a loss of muscle tone due to disuse of the muscles below the injured site.

