

Anatomy of Cerebral Hemispheres

Lecture (15)

Please check our **Editing File**

هذا العمل مبني بشكل أساسي على عمل دفعة ٤٣٦ مع المراجعة والتدقيق وإضافة الملاحظات ولا يغني عن المصدر الأساسي للمذاكرة Important

- Doctors Notes
- Notes/Extra explanation

{وَمَنْ يَتَوَكَّلْ عَلَى اللَّهِ فَهُوَ حَسْبُهُ}

Objectives

At the end of the lecture, students should be able to:

- ✓ List the parts of the cerebral hemisphere (cortex, medulla, basal nuclei, lateral ventricle).
- \checkmark Describe the subdivision of a cerebral hemisphere into lobes.
- \checkmark List the important sulci and gyri of each lobe.
- ✓ Describe different types of fibers in cerebral medulla (association, projection and commissural) and give example of each type.

Cerebrum

Extra

Largest part of the forebrain. (makes up 2/3rd weight off all brain)

(recall: the forebrain gives the <u>cerebral hemispheres</u> and the diencephalon)

- Divided into two halves, the cerebral hemispheres (right and left), which are separated by a deep median longitudinal fissure which lodges the falx cerebri*(fold of dura matter)
- In the depth of the fissure, the hemispheres (left & right) are connected by a bundle of fibers (of white matter) called the corpus callosum (it's example of commissural fibers).

*It is a large, crescentshaped fold of meningeal layer of dura mater that descends vertically in the " longitudinal fissure between the cerebral hemispheres

Median longitudinal fissure

Cerebrum Cerebral Hemispheres

The structure of cerebral hemipheres includes:

Cerebral medulla: Deeper to the cortex, axons running to and from the cells of the cortex form an extensive mass of **white matter** (WM).

Contains synapses (50 trillion)

Superficial (outer) layer of grey matter, the **cerebral cortex**.

Buried <u>within the white matter</u> lie a number of nuclear masses (caudate, putamen, globus pallidus) collectively known as the **basal ganglia.** (nerve cells)

The cavity of hemisphere is called the **lateral ventricle**.

Cerebrum Surfaces

- The superficial layer of grey matter is highly convoluted* to form a complex pattern of ridges (gyri) and grooves (sulci). Gyri (plural) gyrus (singular) | Sucli (plural) sulcus (singular)
- This arrangement <u>maximize</u> the surface area of the cerebral cortex (about 70% is hidden within the depths of sulci).
- Each hemisphere has **3 surfaces**: Superiolateral, Medial, and Inferior.
- The inferior has two parts: tentorial** and orbital
- *highly convoluted : increase surface area = increase nerve cells = more active)
- **It's cover by tentorium (fold of dura matter forming a portion between

Cerebrum Lobes

*not everyone has the same gyri and sulci in their brain. If we view different brains we might not find the same sulci/gyri present in both. But the these 3 sulci (central, lateral, & parieto-ociptal) are found in almost everyone

central	Separates frontal+parietal
lateral	Seperates frontal+parietal+temporal
parieto- occipital	Seperates parietal+occipital

- Three sulci, consistent in their position* (central, lateral (sylvian) & parieto-occipital) are used to divide each hemisphere into the four lobes. - Anatomically (positions) we have 4 lobes
 - Physiologically (Functionally) we have **5 lobes**
- Each hemisphere is divide into <u>FOUR</u> lobes (named after overlying bones): Frontal, Parietal, Temporal, and Occipital. (pool : is the tip of lobe, Parietal lobe don't have pool)

Lobes	Function	Frontal lobe
Frontal	motivation, motor function, smell, mood and aggression (personality and emotion)	Ci p Ci p
Parietal	reception and evaluation of sensory information via thalamus protection from dangerous	Temporal lobe Transverse cerebral fissure Cerebellum Pons Medulla oblongata
Temporal	smell, hearing, memory and abstract thought	Fissure (a deep sulcus) Gyrus a Spinal cord Extr Certain Lateral
Occipital**	visual processing	Cortex (gray matter) Sulcus White matter
**Occulus mea	ins eye in latin so occipital = vision	

Cerebrum Lobes

- Functionally each hemisphere contains a
 'limbic lobe' on the medial surface.
- It responsible for:
 - Establishing emotional states
 - Linking conscious intellectual functions with the unconscious autonomic functions
 - Facilitating memory storage.

Anatomically (positions) we have 4 lobes:
Frontal, Parietal, Temporal & Occipital
Physiologically (Functionally) we have 5 lobes:
Frontal, Parietal, Temporal, Occipital & limbic

Cerebrum Lobes

IMPORTANT (OSPE & mcqs)

- Name of lobs
- Gyrus of each lobe
- Functional area

Main gyri in **superolateral** surface:

			01
	Frontal Lobe*	*In front of central sfs	4
Gyri	Precentral gyrus (motor area)	sulcus & above the	FUT
Sulci	Superior frontal sulci Inferior frontal sulci	lateral sulcus	ZIA
	(divide lobe into) superior, (middle & inferior)** frontal gyri		
	Parietal Lobe***	***Between the	
Gyri	Po <u>s</u> tcentral gyrus (<u>s</u> ensory area)	central & lateral &	
Sulci	Intraparietal sulcus		Superior

Superior , middle &

inferior frontal gyri

parietal

lobule

Precentral

Intraparietal

sulcus

Postcentral

gvrus

parietal

lobule

gyrus

dividing the lobe into superior & inferior **parietal** lobules.

**more important than superior frontal gyri

Cerebrum Lobes *Un

*Under the lateral sulcus & between it & the parietooccipital lobe

Temporal lobe*

	-
Gyri	Superior, middle & inferior temporal gyri
Sulci	Superior & inferior temporal sulci giving rise to superior, middle & inferior temporal gyri.
Insula** *(normal cerebral cortex but inside)	the gyri in the depth of lateral fissure/sulcus**, covered by parts of frontal, parietal & temporal lobes called the opercula (removed in lower pic- so we can see the insula)

Medial Surface			
Gyri	I. <u>Cingulate</u> 2. <u>Parahippocampa</u> l		
Sulci	 I. Parietooccipital 2. Calcarine divide into: Precalcarine & Postcalcarine 3. Cingulate 		

**Fissure and sulcus both mean groove. But fissure is deeper

Broadmann's Map

- Brodmann produced a numbered, cytological map of cerebral cortex based upon its <u>regional histological</u> <u>characteristics.</u>
- The basis of Brodmann's cortical localization is its subdivision into 'areas' with <u>similar cellular and</u> <u>laminar structure.</u>
- Brodmann's numbering of these cortical locations has become one of the standard ways in which clinicians identify brain areas.

*In the spinal cord the grey matter was divided into rexed laminae. Here broadmanns map is similar but in the cerebral hemispheres

Functional Areas of the Cerebral Cortex

"Each primary cortex has association cortex"

Frontal Lobe Only on the boy's slides				
I- <u>Pr</u> imary motor cortex	Located in precentral gyrus	Brodman's area 4	allows conscious control of skilled voluntary (gross) movement (controls skeletal muscles)	
2-Premotor cortex:	Located in the region immediately anterior to the precentral gyrus	Brodmann's area 6	Controls learned, repetitious, or patterned motor skills, typing, playing a musical instrument. Coordinates simultaneous or sequential actions. Involved in the planning of movements.	
3-Prefrontal cortex:	Extensive region of the frontal lobe anterior to premotor area.		Involved with intellect, cognition, recall, and personality. Necessary for judgement , reasoning, persistence, and conscience. Also related to mood. Closely linked to limbic system (emotional part of brain)	
4-Broca's (motor speech) area: (in the premotor area)	Located in the inferior frontal gyrus of the dominant hemisphere, usually left	Brodmann's area 44 & 45	A motor speech area that directs muscles of the tongue. Is active as one prepares to speak.	
5-Frontal eye field:	Located in the middle frontal gyrus immediately in front of premotor cortex	Brodmann's area 8		

Functional Areas of the Cerebral Cortex

<u>"Each primary cortex</u>	has association cortex"				
		Parietal lob	e	Only on the boy's slides	
6-Primary s <u>o</u> matosensory cortex	located in p <u>o</u> stcentral gyrus	Brodmann's area I , 2 , 3	Involved with somatic sens Receives info muscles Exhibits spat Precisely loce	n conscious awareness of gen ses prmation from the skin and s ial discrimination ates a stimulus	heral keletal
7-Parietal association cortex	located posterior to primary somatosensory		Integrates se Forms comp Determines	ي المترجم nsory information ي المترجم rehensive understanding of t size, texture, and relationshi	; :he stimulus p of parts.
		Occipital lobe			
8-Primary visual cortex	located on the medial surface of the hemisphere, in the gyri surrounding the calcarine [*] sulcus	Brodmann's area 17	Receives visu - If we have i thing *Especially p	ual information from the retinjury in this area we cannot	nas see any
9-Visual association cortex	located around the primary visual cortex	Brodmann's area 19	Interprets vis - If we have i . don't know	sual stimuli (color, form, & m njury in this area we can see w what we say	ovement) e, but we .

Functional Areas of the Cerebral Cortex

"Each primary cortex has association cortex"

	Tempo	ral Lobe	Only on the boy's slides	Central Primary view Primary
Primary auditory cortex	located in the superior surface of the superior temporal gyrus	Brodmann's area 41,42	Receives information related to pitch, rhythm, and loudness	Premotor area Somesthetic cortex area Somesthetic area Somesthetic area association area
Auditory association cortex	located immediately around the primary auditory cortex (also includes Wernick's area) Located posterior to the primary auditory cortex		Stores memories of sounds and permits perception of sounds Involved in recognizing and understanding speech Lies in the center of Wernicke's area Auditory is always associated with speech (I need to hear so I can speak)	refrontal area Motor speech area (Broca's area) Auditor association area Primary auditory cortex

Parahippocampal gyrus:

- \circ $\,$ located in the inferomedial part of temporal lobe.
- Deep to this gyrus lies the **hippocampus** and the **amygdala**, which are parts of **limbic system**

حصان البحر/Hippocampus = seahorse

• The body is represented upside down

- Upper part is toes and leg and as we go down the brain we reach the body and hands and face and finally the larynx.
- Representation of the body is according to precise function not size so a lot of space (largest area) is for fingers tongue, hand, face and larynx, while the trunk has a small area.

Copyright @ 2003 Pearson Education, Inc., publishing as Benjamin Cummings.

Language Area

- Organized around the lateral fissure.
- (1) Broca's area: concerned with expressive aspects of language.
- Motor: so if there is a lesion he cannot speak
- (2) Wernick's area: responsible for comprehension of the spoken words.
- Wernick = supramarginal
- Nearby regions of temporal lobe and parietal lobe "(3) angular gyrus & (4) supramarginal gyrus" of the inferior parietal lobule) are important in naming, reading, writing, and calculation.

*Injury to (angular gyrus & supramarginal gyrus) doesn't cause the loss of ability to talk, it only affect reading, writing, naming and calculation.

* : Supramarginal gyrus

** : Angular gyrus

Hemispheric Dominance

- The localization of speech centers & mathematical ability (Calculation and language) is the criterion for defining the dominant cerebral hemisphere.*
- In 96% of normal right-handed individuals and 70% of normal left-handed individuals, the left hemisphere contains the language centers. These are left hemisphere dominant.
- Cerebral dominance becomes established during the first few years after birth.

*When child starts talking and language centres are formed then the dominance will occur

- *these centres are present in both sides but more active in one side.
- Example: in left dominance the broca's area that is active is in left
- (we have it in the right but inactive)
- The right will become active if there is injury to left but will take time. So after the injury the person cannot talk but after time the right side becomes active and he can talk again.

Hemispheres communicate via the corpus callosum

White Matter

*Similar areas in the same lobe (short) but from different lobes (long)

- o Underlies the cortex
- Contains: 1. Nerve fibers 2. Neuroglia cells 3.Blood vessels.
- The nerve fibers originate, terminate or sometimes both, within the cortex.
- Depending on their origin & termination, these nerve fibers are classified into three types:

1. Association fibers: *

Unite different parts of the same hemisphere (within it self)

2. Commissural fibers: **

Connect the corresponding regions of the two hemispheres

3. Projection fibers: Consisting of:

(connect cerebral cotrex with spinal cord)

- a. Afferent fibers conveying impulses to the cerebral cortex.
- b. Efferent fibers conveying impulses away from the cortex.

(a) Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

**Same area but in two hemispheres. Example corpus callosum which will help the two hemispheres act in harmony

White Matter 1. Association Fibers

- Unite different parts of the same hemisphere.
- \circ $% \left(Are of two kinds: \right)$
 - Those connecting adjacent gyri, short association fibers
 - Those connecting more distant parts, long association fibers.

Long Association Fibers			
I. Uncinate fasciculus	connects frontal to temporal lobe.		
2. Superior longitudinal fasciculus	connects the frontal, occipital, parietal, and temporal lobes		
3.Arcuate fasciculus	connect gyri in frontal to temporal lobes		
4. Inferior longitudinal fasciculus	connects occipital to temporal pole		
5. Cingulum	connects frontal & parietal lobes to the para-hippocampal gyrus and adjacent temporal gyri		

This slide is **Extra**

White Matter 2. Commissural Fibers

- Connect the corresponding regions of the two hemispheres.
- o Include:
 - Corpus callosum.
 - Anterior commissure.
 - Hippocampal commissure (commissure of fornix).
 - <u>Posterior commissure</u>.

Anterior commissure: connects the inferior and middle temporal gyri & the olfactory regions of the two hemispheres

Important in the

bilateral pupillary reflex

Hippocampal Commissure: connect the two hippocampi with each other

White Matter 2. Commissural Fibers

Corpus Callosum

- Connects the corresponding regions of the two hemispheres except the temporal lobes, that are connected by anterior commissure.
- It is shorter craniocaudally than is the hemisphere.
- The callosal fibers linking the frontal poles, curve forward forming <u>anterior forceps</u> (forceps minor).
- The callosal fibers linking the occipital poles, curve backward forming <u>posterior forceps</u> (forceps major).

Only on the boy's slides

White Matter 2. Commissural Fibers

Extra

Fornix

Parts of Corpus Callosum:

- 1. Body
- 2. Splenium
- 3. <u>Genu</u>

Short association fibres

Superior longitudinal

Genu of corpus callosum-

Anterior commissure

Uncinate fasciculus-

Rostrum of corpus callosum-

fasciculus

Cingulum

4. Rostrum

Only on the boy's slides

White Matter 3. Projection Fibers

- Consist of:
 - Afferent fibers conveying impulses to the cerebral cortex.
 - Efferent fibers conveying impulses away from the cortex.
- Deeper to the cortex, these fibers are arranged radially as the corona radiata.
- Then the fibers converge downward, form **internal capsule**, between thalamus and basal ganglia.
- Continue in the <u>crus cerebri</u> of the <u>midbrain</u>, basilar part of <u>pons</u>, & pyramid of <u>medulla oblongata</u>.

White Matter 3. Projection Fibers

Internal Capsule

Bundle of projection fibers, passes through the interval between the **thalamus** and the **basal ganglia** (caudate & lentiform* nuclei)

<u>Has 5 parts:</u>

- Anterior limb: Thalamocortical & Frontopontine fibers
- 2. Genu: Corticobulbar fibers
- **3.** <u>Posterior limb</u>: Corticospinal, Corticobulbar & Thalamocortical fibers.
- **4. Retrolenticular part:** Geniculocalcarine fibers
- **5. Sublenticular part:** Geniculo-temporal fibers.

Summary

	Broadmann's Areas	
I		
2	Primary somatosensory cortex	
3		
4	Primary motor cortex	
6	Premotor cortex	
8	Frontal eye field	
17	Primary visual cortex	
19	Visual association cortex	
41	Primary auditory cortex	
42		
44	Pro co'o oreo	
45	Broca's area	

Lobe	Gyri	Sulci	
Frontal	 Precentral gyrus Superior frontal gyrus Middle frontal gyrus Inferior frontal gyrus 	 Superior frontal sulci Inferior frontal sulci 	
Parietal	I. Postcentral gyrus	I. Intraparietal sulcus	
Temporal	 Insula Superior temporal g Middle temporal gyr Inferior temporal gy 	 Superior temporal sulci yrus Inferior temporal sulci rus 	
Medial Surface	 Cingulate Parahippocampal 	 Parietooccipital Calcarine Cingulate 	
1. Association Fibers White Matter 1. Association Fibers 2. Commissural Fibers 1. Uncinate fasciculus 3. Projection Fibers 1. Uncinate fasciculus 1. Corpus Callosum 2. Arcuate fasciculus 1. Corpus Callosum 3. Superior longitudinal fasciculus 3. Genu 4. Inferior longitudinal fasciculus 4. Posterior commisure			

Basilar pons

MCQs

(1) which of the following is not one of the surfaces of the cerebrum?

A) Superiolatral C) Posterior B) Medial D) Inferior

(2) Which lobe is responsible for smell, hearing and memory?

A) Frontal	B) Temporal
C) Occipital	D) Parietal

(3) Where is frontal eye field?

C) Occipital	D) Parietal
A) Frontal	B) Temporal

(4) When is cerebral dominance becomes established?

A) Before birth	B) First few years after birth
C) At puberty	D) Mid 40s

(5) Which nerve fiber type connect corresponding regions of different hemisphere?

A) Association

C) Projection

B) CommissuralD) Non of them

(6) Superficial layer of cerebral cortex consist of?

A) Grey matter C) Both A & B B) White matter D) Non of them

(7) Corpus collosum is example of?

A) Efferent projection fiberC) Afferent projection fiber

B) Commissural fiberD) Association fiber

(8) Brodman's area 4 is related to?

A) Primary motor cortexB) Primary visual cortexC) Primary motor cortexD) Primary visual cortex

(9) Parahippocampal gyrus located in the inferomedial part of?

A) Frontal lobeB) Parietal lobeC) Occipital lobeD) Temporal lobe

(10) Which of them regions concerned with expressive aspects of language? A) Broca's area B) Wernick's area C) Angular gyrus D) Supramarginal gyrus

Answers

(7) B

(8) [

(9) D

(6) A (1) [(2) B (3) A (4) B (10) A (5) B

SAQ

(1) What is the function of afferent projection fibers?

Afferent fibers convey impulses to the cerebral cortex

(2) Name the 4 Commissural Fibers?

1.Corpus callosum.

2. Anterior commissure.

3. Hippocampal commissure (commissure of fornix).

4. Posterior commissure.

Good luck Special thank for team436 🞔

Team Leaders:

Faisal Fahad Alsaif Rawan Mohammad Alharbi

Team Members:

Abdulaziz Aldukhayel Abdulrahman Alduhayyim Rinad Alghoraiby Rawan Mishal

References:

1.Girls' & Boys' Slides

2. Greys Anatomy for Students

3.TeachMeAnatomy.com

 \sim

Anatomyteam.437@gmail.com