

Review File Final lectures

L14: Cerebellum

Characteristics	Cerebellum		
Origin	From hindbrain		
Position	Lies behind the pons and medulla, separated from them by 4th ventricle		
External structures	Consists of two cerebellar hemispheres joined in the midline by vermis	Its surface is highly convoluted forming f fissures	folia , separated by
Internal structures	Outer grey matter: cerebellar cortex Inner white matter: cerebellar medulla	 Deep seated nuclei in white matter: (from medial to lateral) I. Fastigial nnucles 2. Globose nucleus 3. Emboliform nucleus 4. Dentate nucleus 	
Anatomical subdivisions	Anterior lobe: In front of primary fissure	Posterior (middle) lobe: Between primary and secondary (postero- lateral) fissures	Flocculonodular lobe: In front of secondary fissure

Climbing fibers: <u>from</u> inferior olivary nucleus, relay to purkinje cells

Characteristics	Cerebellum		
Functional subdivisions	Archicerebellum:	Paleocerebellum:	Neocerebellum:
Superior vermis	Fastigial nucleus relation	Globose and emboliform nuclei relation	Dentate nucleus relation
Primary Poteroit Internet of the second seco	Afferent: from vestibular nuclei (vestibulocerebellar fibers) through ICP	Afferent: from spinal cord (dorsal and ventral spinocerebellar tracts through ICP and SCP respectively) Efferent: to globose and emboliform nuclei which projects	Afferent: from pons (pontocerebellar tract) through MCP
	Efferent: cortical (<i>purkinje cell</i>) fibers project to fastigial which		Efferent: to red nucleus but mostly to ventral lateral nucleus of thalamus through SCP then to motor cortex
	reticular formation	to red nucleus (through SCP)	Function: Coordination of
Green = Archi-cerebellum, Blue= Paleo-cerebellum. Pink= Neo-cerebellum.	and eye movement	muscle tone	voluntary movements

Cerebellar lesions

MIDLINE LESION: Loss of postural control. UNILATERAL LESION: "Cerebellar ataxia"

causes ipsilateral :

- 1. Incoordination of arm: intention tremors (on performing voluntary movements)
- 2. Incoordination of leg: unsteady gait
- 3. Incoordination of eye movements: nystagmus
- 4. Slowness of speech: dysarthria (difficulty of speech).

L15: Cerebrum

- **3 surfaces:** Superolateral, Medial & Inferior (Tentorial & Orbital)
- 3 main sulci:

Central sulcus	separates frontal & parietal lobes
Lateral sulcus	separate frontal, parietal & temporal lobes
Parieto-occipital	separate parietal & occipital lobes

- Anatomically (positions) 4 lobes: Frontal, Parietal, Temporal & Occipital
- Physiologically (Functionally) 5 lobes: Frontal, Parietal, Temporal, Occipital & Limbic

Frontal	motivation, motor function, smell, mood & aggression
Parietal	reception and evaluation of sensory information
Temporal	smell, hearing, memory and abstract thought
Occipital	visual processing

 Medial surface: 2 main gyri (cingulate & parahippocampal) & 3 main sulci (paraitoocitital, calcrine & cingulate)

Frontal lobe	 Primary motor cortex (Brodmann's area 4) in precentral gyrus Premotor cortex (Brodmann's area 6) anterior to precentral gyrus Frontal eye field (Brodmann's area 8) in the middle frontal gyrus Broca's "motor speech" (Brodmann's areas 44,45) in inferior frontal gyrus
Parietal lobe	Primary somatosensory cortex (Brodmann's areas 3,1,2) in postcentral gyrus Parietal association cortex posterior to primary somatosensory
Occipital lobe	Primary visual cortex (Brodmann's area 17) surrounding the calcarine sulcus Visual association cortex (Brodmann's area 19) around primary visual cortex
Temporal Lobe	Primary auditory cortex (Brodmann's areas 41,42) in superior temporal gyrus Wernicke's area end of lateral sulcus

- <u>White Matter</u> (Association, Commissural & Projection fibers):
- Association fibers: Unite different parts of the same hemisphere, 2 types (short: adjacent gyri & long: more distant parts)
- **Commissural fibers:** Connect the corresponding regions of the two hemispheres. 4 types: (Corpus callosum, Anterior, Hippocampal & Posterior)
- Corpus Callosum connects the corresponding regions of the two hemispheres except the temporal lobes, that are connected by anterior commissure
- **Projection fibers:** Afferent/Efferent fibers conveying impulses to/away from the cerebral cortex
- Internal Capsule: bundle of projection fibers, passes through the interval between the thalamus & the basal ganglia. Parts:
 - 1. Anterior limb: Thalamocortical & Frontopontine fibers
 - 2. Genu: Corticobulbar fibers
 - 3. Posterior limb: Corticospinal, Corticobulbar & Thalamocortical fibers
 - 4. Retrolenticular part: Geniculocalcarine fibers
 - 5. Sublenticular part: Geniculo-temporal fibers

L16: Blood Cerebral Circulation

- The arterial supply of the cerebrum is composed 2 arterial systems:
- 1) Carotid system (Anterior cerebral circulation): Supply anterior portion of brain Internal carotid artery and its branches: ACA (smaller) & MCA (bigger)
- 2) Vertebro-Basilar system (Posterior cerebral circulation): Supply posterior portion of

brain. The two vertebral arteries (from the subclavian artery) unite to form **basilar artery** It divides at the upper border of pons into two **PCA**

ACA	Orbital & medial surfaces of frontal & parietal lobes A narrow part on the superolateral surface	
ACA occlusion	Motor disturbance (weakness) in contralateral distal leg Difficulty in prefrontal lobe functions: Cognitive thinking, Judgement, Motor initiation & Self monitoring	
МСА	Entire Superolateral surface: Somatosensory Cortex, Motor Cortex, Language areas (Broca's "Motor area" & Wernicke's "Sensory area") & Auditory areas (Primary auditory area & Heschl's Gyrus)	
MCA occlusion	Contralateral weakness & sensory loss of all body except lower limb & perineum Visual field cut (damage to optic radiation) Aphasia (language disturbance): In Broca's area: motor aphasia production & In Wernicke's area: sensory aphasia comprehension	
РСА	Anterior & inferior temporal lobes <mark>(Uncus)</mark> Inferior & Medial Occipital lobe (visual area)	
PCA occlusion	Visual disturbances: homonymous hemianopsia & cortical blindness, patients unaware they cannot see (Anton's Syndrome) Memory impairment: if temporal lobe is affected	

- Circulus Arteriosus (Circle of wills): joins the carotid and vertebrobasilar systems
- It is located on the base of the brain to supply deep structures:
- 1. Optic chiasma.
 2. Hypothalamus.
 3. Midbrain.
 4. Pituitary gland
 It is formed by:

Two internal carotid arteries	Two anterior cerebral arteries		
Two posterior cerebral arteries	Two posterior communicating arteries		
One anterior communicating artery			

- Anterior Perforating Arteries supplies: Large part of basal ganglia, Optic chiasma, Internal capsule & Hypothalamus
- Posterior Perforating Arteries supplies:
 Ventral portion of Midbrain, Parts of Subthalamus & Hypothalamus

L17: Basal Ganglia

Corpus striatum are primarily concerned with control of posture & movement.

- Dysfunction does NOT cause paralysis, sensory loss or ataxia
- Its leads to: dyskinesias, Alteration in muscle tone: hypertonia/hypotonia Soft speech, slow steps, tremor at rest

L18: Thalamus & Limbic System

- <u>Thalamus</u>: largest nuclear mass of the whole body & largest part of the diencephalon , It is formed of two oval masses of grey matter
- Together with the hypothalamus they form the lateral wall of the 3rd ventricle

Antoviov Thalamia Nucleus	Afferent	Mammillary body	
Anterior Indianic Nucleus	Efferent	Cingulate gyrus	
Madial Nucleus	Afferent	Hypothalamus	
Medidi Nucleus	Efferent	Frontal cortex & Prefrontal cortex	
Ventral Anterior Nucleus	Afferent	Globus pallidus & substania nigra	
	Efferent	Premotor cortex	
Ventral Lateral	Afferent	Dentate Nucleus	
Nucleus	Efferent	Primary Motor Cortex	
Ventral Posterior Lateral	Afferent	Medial & Spinal lemnisci	
Nucleus	Efferent	Sensory Cortex	
Ventral Posterior	Afferent	Trigeminal Leminiscus	
Medial Nucleus	Efferent	Sensory Cortex	
Lateral Geniculate	Afferent	Optic tract	
Nucleus	Efferent	Visual Cortex	
Medial Geniculate	Afferent	Lateral Leminiscus	
Nucleus	Efferent	Auditory Cortex	

- <u>limbic system</u>: separates the medial surface of the cerebral cortex from the diencephalon important in the control of the emotional responses, it is composed of four main structures (Limbic lobe, Amygdala, Hippocampus & Septal area), it form connections between the limbic system & the hypothalamus, thalamus and cerebral cortex.
- Limbic lobe: C-shaped ring of grey matter on the medial side of each cerebral hemisphere, includes: (Subcallosal area, Cingulate gyrus, Isthmus, Parahippocampal gyrus & Uncus)
- Hippocampus: important in memory (consolidation of new short-term memories) & learning
- Fornix: C-shaped group of fibers, Its principal efferent pathway
- In Alzheimer's disease: the hippocampus is one of the first brain areas to show damage.
- Korsakoff's psychosis syndrome is a chronic memory disorder caused by severe deficiency of thiamine (Vit. B1) & alcoholic intoxication.

L19: Meninges, Ventricles & CSF

o The brain & spinal cord are covered by **3 layers** of meninges :

(1) dura, (2) arachnoid & (3) pia mater.

o The important **dural folds** inside the brain are the **falax cerebri** & **tentorium cerebelli**.

o CSF is **produced by the choroid plexuses** of the ventricles of the brain : lateral ,3rd & 4th ventricles.

o CSF <u>circulates</u> in the subarachnoid space.

o CSF is drained into the dural venous sinuses principally superior saggital sinus.

o The **subarachnoid space** in the spinal cord **terminates at the 2nd sacral** vertebra while the spinal cord terminates at L1-L2

o Obstruction of the flow of CSF as in tumors of the brain leads to hydrocephalus.

GOOD LUCK 🖤

Rawan Mohammad Alharbi Faisal Fahad Alsaif

