Review File

Final lectures

وَمَن يَوْوَّلَّعَلَى اللَّهِ فَهُوَحَسْبُهُ

L14: Cerebellum

Characteristics	Cerebellum		
Origin	From hindbrain		
Position	Lies behind the pons and medulla, separated from them by $4^{\text {th }}$ ventricle		
External structures	Consists of two cerebellar hemispheres joined in the midline by vermis	Its surface is highly convoluted forming folia, separated by fissures	
Internal structures	Outer grey matter: cerebellar cortex Inner white matter: cerebellar medulla	Deep seated nuclei in white matter: (from medial to lateral) I. Fastigial nnucles 2. Globose nucleus 3. Emboliform nucleus 4. Dentate nucleus	
Anatomical subdivisions	Anterior lobe: In front of primary fissure	Posterior (middle) lobe: Between primary and secondary (posterolateral) fissures	Flocculonodular lobe: In front of secondary fissure

- Climbing fibers: from inferior olivary nucleus, relay to purkinje cells

Cerebellar lesions

MIDLINE LESION: Loss of postural control.
UNILATERAL LESION: "Cerebellar ataxia"
causes ipsilateral :
I. Incoordination of arm: intention tremors (on performing voluntary movements)
2. Incoordination of leg: unsteady gait
3. Incoordination of eye movements: nystagmus
4. Slowness of speech: dysarthria (difficulty of speech).

L15: Cerebrum

- 3 surfaces: Superolateral, Medial \& Inferior (Tentorial \& Orbital)
- 3 main sulci:

Central sulcus	separates frontal \& parietal lobes
Lateral sulcus	separate frontal, parietal \& temporal lobes
Parieto-occipital	separate parietal \& occipital lobes

- Anatomically (positions) 4 lobes: Frontal, Parietal, Temporal \& Occipital
- Physiologically (Functionally) 5 lobes: Frontal, Parietal, Temporal, Occipital \& Limbic

Frontal	motivation, motor function, smell, mood \& aggression
Parietal	reception and evaluation of sensory information
Temporal	smell, hearing, memory and abstract thought
Occipital	visual processing

- Medial surface: 2 main gyri (cingulate \& parahippocampal) \& $\mathbf{3}$ main sulci (paraitoocitital, calcrine \& cingulate)

Frontal lobe	Primary motor cortex (Brodmann's area 4) in precentral gyrus Premotor cortex (Brodmann's area 6) anterior to precentral gyrus Frontal eye field (Brodmann's area 8) in the middle frontal gyrus Broca's "motor speech" (Brodmann's areas 44,45) in inferior frontal gyrus
Parietal lobe	Primary somatosensory cortex (Brodmann's areas 3,1,2) in postcentral gyrus Parietal association cortex posterior to primary somatosensory
Occipital lobe	Primary visual cortex (Brodmann's area 17) surrounding the calcarine sulcus Visual association cortex (Brodmann's area 19) around primary visual cortex
Temporal Lobe	Primary auditory cortex (Brodmann's areas 41,42) in superior temporal gyrus Wernicke's area end of lateral sulcus

- White Matter (Association, Commissural \& Projection fibers):
- Association fibers: Unite different parts of the same hemisphere, 2 types (short: adjacent gyri \& long: more distant parts)
- Commissural fibers: Connect the corresponding regions of the two hemispheres. 4 types: (Corpus callosum, Anterior, Hippocampal \& Posterior)
- Corpus Callosum connects the corresponding regions of the two hemispheres except the temporal lobes, that are connected by anterior commissure
- Projection fibers: Afferent/Efferent fibers conveying impulses to/away from the cerebral cortex
- Internal Capsule: bundle of projection fibers, passes through the interval between the thalamus \& the basal ganglia. Parts:

1. Anterior limb: Thalamocortical \& Frontopontine fibers
2. Genu: Corticobulbar fibers
3. Posterior limb: Corticospinal, Corticobulbar \& Thalamocortical fibers
4. Retrolenticular part: Geniculocalcarine fibers
5. Sublenticular part: Geniculo-temporal fibers

Ll6: Blood Cerebral Circulation

- The arterial supply of the cerebrum is composed 2 arterial systems:

1) Carotid system (Anterior cerebral circulation): Supply anterior portion of brain Internal carotid artery and its branches: ACA (smaller) \& MCA (bigger)
2) Vertebro-Basilar system (Posterior cerebral circulation): Supply posterior portion of brain. The two vertebral arteries (from the subclavian artery) unite to form basilar artery It divides at the upper border of pons into two PCA

ACA	Orbital \& medial surfaces of frontal \& parietal lobes A narrow part on the superolateral surface
ACA occlusion	Motor disturbance (weakness) in contralateral distal leg Difficulty in prefrontal lobe functions: Cognitive thinking, Judgement, Motor initiation \& Self monitoring
MCA	Entire Superolateral surface: Somatosensory Cortex, Motor Cortex, Language areas (Broca's "Motor area" \& Wernicke's "Sensory area") \& Auditory areas (Primary auditory area \& Heschl's Gyrus)
MCA occlusion	Contralateral weakness \& sensory loss of all body except lower limb \& perineum Visual field cut (damage to optic radiation) In Wernicke's area: sensory aphasia comprehension
PCA	Anterior \& inferior temporal lobes (Uncus) Inferior \& Medial Occipital lobe (visual area)
PCA occlusion	Visual disturbances: homonymous hemianopsia \& cortical blindness, patients unaware they cannot see (Anton's Syndrome) Memory impairment: if temporal lobe is affected

- Circulus Arteriosus (Circle of wills): joins the carotid and vertebrobasilar systems
- It is located on the base of the brain to supply deep structures:

1. Optic chiasma.
2. Hypothalamus.
3. Midbrain.
4. Pituitary gland

- It is formed by:

Two internal carotid arteries
Two posterior cerebral arteries
Two anterior cerebral arteries
Two posterior communicating arteries

One anterior communicating artery

- Anterior Perforating Arteries supplies:

Large part of basal ganglia, Optic chiasma, Internal capsule \& Hypothalamus

- Posterior Perforating Arteries supplies:

Ventral portion of Midbrain, Parts of Subthalamus \& Hypothalamus

L17: Basal Ganglia

Basal Ganglia			
Corpus Striatum			
Caudate	Lentiform		
	Putamen		Globus Pallidus
Neostriatum		Paleostriatum	

Corpus striatum are primarily concerned with control of posture \& movement.

The striatum is the input region of corpus striatum,

Afferent fibers of striatum come from:
I. cerebral cortex.
2. intralaminar nucleus of thalamus.
3. pars compacta of substantia nigra.

Efferent fibers of striatum is directed to
I. globus pallidus.
2. pars reticulata of substantia nigra.
while the medial segment of globus pallidus \& pars reticulata of substantia nigra are the output portion.

Afferent fibers of both lateral \& medial segments of globus pallidus come from:
I. Striatum 2. Subthalamic nucleus.

Efferent fibers of lateral segment is directed to subthalamic nucleus.

Efferent fibers of medial segment is directed to
I. ventral lateral,
2. ventral anterior \&
3. centromedian nucleus of thalamus

- Dysfunction does NOT cause paralysis, sensory loss or ataxia
- Its leads to: dyskinesias, Alteration in muscle tone: hypertonia/hypotonia Soft speech, slow steps, tremor at rest

L18: Thalamus \& Limbic System

- Thalamus: largest nuclear mass of the whole body \& largest part of the diencephalon, lt is formed of two oval masses of grey matter
- Together with the hypothalamus they form the lateral wall of the 3rd ventricle

Anterior Thalamic Nucleus	Afferent	Mammillary body
	Efferent	Cingulate gyrus
Medial Nucleus	Afferent	Hypothalamus
	Efferent	Frontal cortex \& Prefrontal cortex
	Afferent	Globus pallidus \& substania nigra
	Efferent	Premotor cortex
Ventral Lateral Nucleus	Afferent	Dentate Nucleus
	Efferent	Primary Motor Cortex
	Afferent	Medial \& Spinal lemnisci
	Efferent	Sensory Cortex
Ventral Posterior Medial Nucleus	Afferent	Trigeminal Leminiscus
	Efferent	Sensory Cortex
	Afferent	Optic tract
	Efferent	Visual Cortex
Medial Geniculate	Afferent	Lateral Leminiscus
Nucleus	Efferent	Auditory Cortex

- limbic system: separates the medial surface of the cerebral cortex from the diencephalon important in the control of the emotional responses, it is composed of four main structures (Limbic lobe, Amygdala, Hippocampus \& Septal area), it form connections between the limbic system \& the hypothalamus, thalamus and cerebral cortex.
- Limbic lobe: C-shaped ring of grey matter on the medial side of each cerebral hemisphere, includes: (Subcallosal area, Cingulate gyrus, Isthmus, Parahippocampal gyrus \& Uncus)
- Hippocampus: important in memory (consolidation of new short-term memories) \& learning
- Fornix: C-shaped group of fibers, Its principal efferent pathway
- In Alzheimer's disease: the hippocampus is one of the first brain areas to show damage.
- Korsakoff's psychosis syndrome is a chronic memory disorder caused by severe deficiency of thiamine (Vit. BI) \& alcoholic intoxication.

L19: Meninges, Ventricles \& CSF

- The brain \& spinal cord are covered by 3 layers of meninges :
(1) dura, (2) arachnoid \& (3) pia mater.
o The important dural folds inside the brain are the falax cerebri \& tentorium cerebelli.
o CSF is produced by the choroid plexuses of the ventricles of the brain : lateral , 3rd \& 4th ventricles.
- CSF circulates in the subarachnoid space.
- CSF is drained into the dural venous sinuses principally superior saggital sinus.
o The subarachnoid space in the spinal cord terminates at the 2 nd sacral vertebra while the spinal cord terminates at Ll-L2
o Obstruction of the flow of CSF as in tumors of the brain leads to hydrocephalus.

GOOD LUCK 9

Rawan Mohammad Alharbi
Faisal Fahad Alsaif

