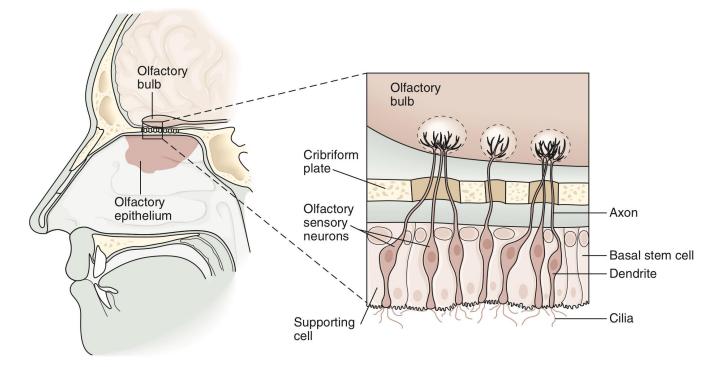


Physiology of the smell and taste

Objectives:

- Appreciate the physiology of olfaction & taste *
- Describe the olfactory & taste pathways *
- Appreciate some pathophysiological conditions related to * olfaction & taste

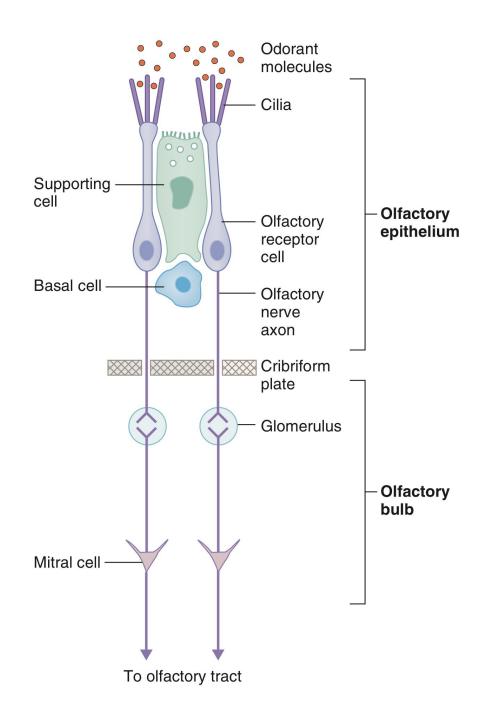
Done by :


- Team leaders: Abdulelah Aldossari, Ali Alammari Fatima Balsharaf, Rahaf Alshammari
- Team members: Abdulaziz Aldurgham, Fahad Alfaiz *

وَأَن لَّيْسَ لِلْإِنسَانِ إِلَّا مَا سَعَىٰ

Anatomy of olfaction

- Olfactory epithelium "mucus": in the roof of nasal cavity near the septum
 - Contain olfactory receptors (bipolar neurons)
 - Axons collected in bundles called fila olfactoria



Physiology of olfaction

- Power of perceiving odors is called smell
- Olfactory receptors present in the roof of nasal cavity
- → Neurons with long cilia (olfactory hairs)
- Chemicals must dissolved in mucus for detection
- → Impulses transmitted via the olfactory nerve
- → Interpretation of smells is made in the olfactory cortex of the brain
- ★ Human can differentiate between 2000-4000 odours
 ★ Adaptation can occur to pleasant and nasty smells due to changes both in receptors and central connections

Olfactory Transduction

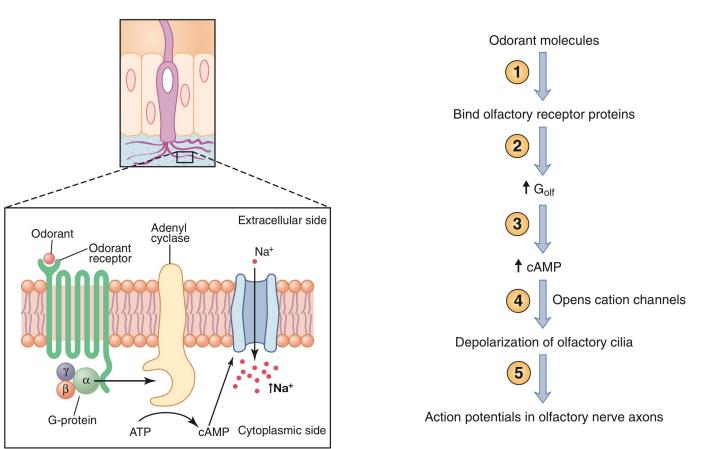
Molecules dissolve in mucus layer → combine with receptors on cilia → stimulate adenylate cyclase →increase intracellular cAMP →opening of Na channels →receptors potential →AP in olfactory pathway

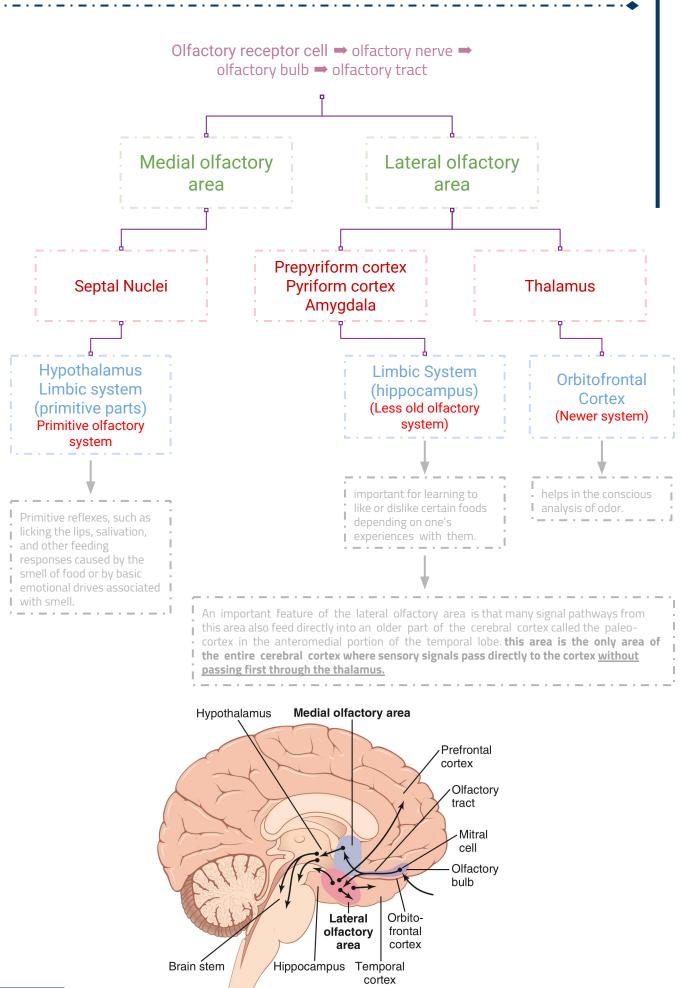
The Olfactory Pathway

Olfactory pathway

Fila olfactoria enter olfactory bulb

➡ synapse with mitral and tufted cells


from <u>mitral cells</u> lateral and intermediate stria start ⇒end on <u>ipsilateral</u> cortex


from<u>tufted cells</u> medial stria start then cross the midline & end on granular cells in opposite side (<u>contralateral</u>)

- ★ Impulses travel along the olfactory tracts to the limbic system (also involved in emotions and memory)
- Impulses are interpreted in olfactory cortex Deep in temporal lobe and base of frontal lobe

Mechanism of olfactory cell stimulation:

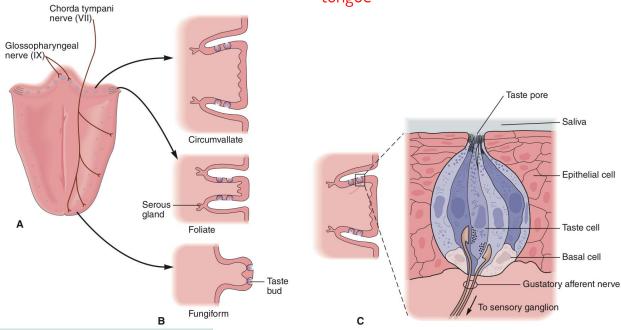
Oduran + receptor protein \Rightarrow Activation of G protein \Rightarrow Activation of adenylate cyclase \Rightarrow ATP to cAMP \Rightarrow Opening of Na+ channels \Rightarrow Na+ influx \Rightarrow depolarization

some pathophysiological conditions related to olfaction as anosmia, parosmia hypo and	
hyperosmia	

Pathophysiology

Disorder	Description			
Anosmia	 loss of smell sensation Due to damage to olfactory Epithelium 			
Dysosmia	 Distorted sense of smell 			
 - -	Parosmia	Phantosmia	Agnosia	
	Alteration in smell sensation	Perception of smell without an odor present	Inability to classify or contrast odors, although able to detect odors	
Hyperosmia	 increase in smell Sensation Adrenal insufficiency 			
Hyposomia	 decreased smell Sensation Vitamin A deficiency 			

The Physiology of Taste


- → Taste is the sensation produced when a substance in the mouth reacts chemically with taste receptors.
- Taste buds are specialized receptors widely scattered throughout the oral cavity:
 - Tongue
 - Soft palate
 - Inner surface of cheeks

Types of Papillae:

→

- The tongue is covered with 3 types of projections called papillae:
 - Filiform: Sharp no taste buds
 - Fungiform: Rounded with moderate number of taste buds
 - Circumvallate: Large papillae with numerous number of taste buds
 - Foliate: located in the folds along the lateral surfaces of the tongue.

No taste buds on the mid dorsum of the tongue

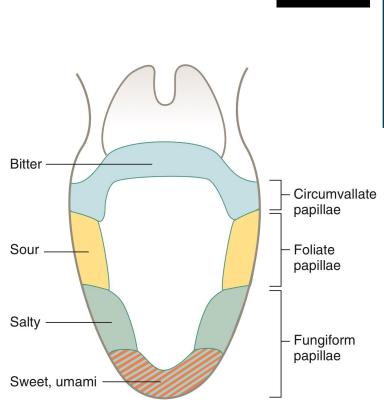
Structure of taste buds:

- → Gustatory "Taste" cells with long microvilli (gustatory hair cells).
 - They are receptor cells with cilia projected through taste pore between the supporting cells.
- → Hairs are stimulated by chemicals dissolved with saliva and transmit impulses to the brain.
- Impulses are carried to the gustatory complex by cranial nerves as taste buds are found in different areas:
 - ♦ Facial nerve (VII)
 - Glossopharyngeal nerve (IX)
 - Vagus nerve (X)

Taste Sensation & Pathway

Distribution of taste buds:

- → Distribution of taste buds on the tongue is not uniform:
 - Sweet tongue tip
 - Sour tongue margins
 - Bitter back of tongue
 - Salty widely distributed


Taste sensations:

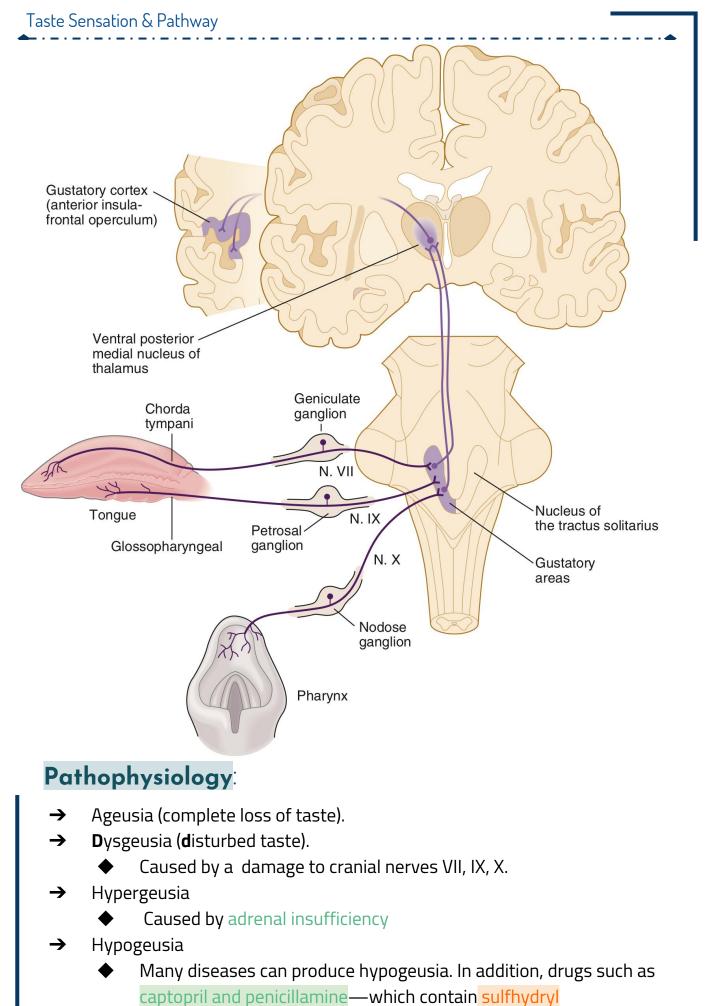
5 established tastes:

- 1. <u>Sweet</u> receptors respond to:
 - a. Sugars
 - b. Saccharine
 - c. Some amino acids
- 2. <u>Sour</u> receptors respond to:
 - a. H+ ions
 - b. Acids
- 3. <u>Bitter</u> receptors respond to:
 - a. Alkaloids
- 4. <u>Salty</u> receptors respond to:
 - a. Salt, ions, metal

5. <u>Umami</u> receptors respond to:

- a. Glutamate "beef taste" of steak
- Molecules dissolve in the saliva
 » attach to receptors on cillia of gustatory cells » receptors
 potential » action potential.
- Combination between molecules and receptors are weak (since taste can be easily abolished by washing mouth with water).
- ★ When stimulated produce nerve impulse to specific brain area through:
 - Anterior 2/3 of the tongue » VII
 - Posterior 1/3 of the tongue » IX
 - Palate, pharynx, epiglottis » X

Umami, a Japanese word meaning "delicious,"


Taste pathway:

- First order neuron:
 - Taste fibres from the three cranial nerves form "*tractus solitarius*" end in the nucleus of *tractus solitarius* "TS"(medulla).
- Second order neuron:
 - From *TS* cross the midline to ascend in the medial lemniscus to the ventral posterior medial nucleus of the thalamus.
 - Third order neuron:

 \rightarrow

From thalamus project the cerebral cortex through thalamic radiation.

groups—cause temporary loss of taste sensation.

- 1. medial stria starts from
- A. . mitral cells
- B. . tufted cells
- C. . basal cells
- D. . taste receptors
- 2. Vitamin A Deficiency causes
 - A. . Ageusia
 - B. . Dysgeusia
 - C. . Anosmia
 - D. . Hyposomia
- 3. Which of the following described as Primitive olfactory system?
 - A. .Thalamus
 - B. . Pyriform cortex
 - C. .Hypothalamus
 - D. .Amygdala
- 4. "Perception of smell without an odor present"; is a definition of which of the following?
 - A. .Phantosmia
 - B. .Parosmia
 - C. .Hyperosmia
 - D. .Agnosia
- 5. Each of the following is part of Lateral olfactory area except:
 - A. .Septal Nuclei
 - B. .Amygdala
 - C. .Thalamus
 - D. .Prepyriform cortex

Answers: 1.B 3.C 4.A 5.A 7B 9B 10D 6. Taste buds can be found on all of

- the following except?
 - A. Tongue
 - B. Soft palate
 - C. Hard palate
 - D. Inner surface of the cheek
- 7. Umami receptors respond to:
- A. Alkaloids
- B. Glutamate
- C. Some amino acids
- D. H+ ions

8. Taste from the posterior $\frac{1}{3}$ of the tongue is sensed by:

- A. Glossopharyngeal nerve
- B. Vagus nerve
- C. Hypoglossal nerve
- D. Facial nerve
- 9. Tractus Solitarius is formed by the
- _, _, and _ cranial nerves.
 - A. IX, X,XI
 - B. VII, IX, X
 - C. VIII, X, XI
- D. VIII, IX, X

10. Which of the following is a pathophysiological manifestation caused by adrenal insufficiency?

- A. Ageusia
- B. Hypogeusia
- C. Dysgeusia
- D. Hypergeusia