PRACTICAL HAEMOGLOBINOPATHIES

DR. FATMA S. AL-QAHTANI associate professor consultant haematopathologist department of pathology

Golden Rules to Evaluate Hemoglobin Electrophoresis

- 1) You must know the CBC results (RBC count, Hb, MCV, MCH, RDW & Plt).
- 2) Peripheral blood film might be useful (target, sickle, pencil, rhomboidal, golf).
- 3) different methods has its own issues (gel: alkaline or acid, HPLC & capillary electrophoresis)
- 4) Family history and molecular tests are critical in difficult cases and to confirm the diagnosis.
- 5) As a physician, do not under estimate the medical history and clinical examination.

Peak name	Calibrated area %	Area %	Retention time (min)	Peak area
P1		0.2	0.81	3314
F	23.8*		1.12	397 418
P2		3.1	1.33	53 378
P3		2.6	1.71	44 107
Ao		39.7	2.48	683 561
A2	1.8*		3.61	34 884
S – window		15.5	4.41	267 188
C – window		13.9	5.11	239 583

Total area: 1723 434

F Concentration = 23.8*%

A2 Concentration = 1.8*%

*Values outside of expected ranges

Analysis comments:

FIGURE 14-7 A mixture of haemoglobins separated by HPLC. From left to right the peaks are: injection artefact, post-translational modified haemoglobin F (double peak), haemoglobin F (pink), glycated haemoglobin A, other post-translationally modified haemoglobin A, haemoglobin S, post-translationally modified haemoglobin C (two very small peaks) and haemoglobin C.

Parameter	Iron deficiency anemia	α-thalassemia minor	β-thalassemia minor
MCV	ł	ł	ł
RDW	t	Normal	Normal
RBCs	+	Normal	Normal
Peripheral smear	Microcytosis, hypochromia Pencil cell	Target cells	Target cells
Serum iron studies	↓ Iron & ferritin ↑ TIBC	Normal/† iron & ferritin (RBC turnover)	Normal/ † iron & ferritin (RBC turnover)
Response to iron supplementation	† Hemoglobin	No improvement	No improvement
Hemoglobin electrophoresis	Normal	Normal	† Hemoglobin A2

MCV = mean corpuscular volume; RBC = red blood cell; RDW = red cell distribution width; TIBC = total iron-binding capacity.

biroWU

TABLE 14-5

RESULTS OF LABORATORY INVESTIGATIONS IN INTERACTIONS OF HAEMOGLOBIN S AND α OR β THALASSAEMIA IN ADULTS

	MCV	% S	% A	% A ₂	% F	
AS	N	35–38	62-65	<3.5	<1	
SS	N	88-93	0	<3.5	5-10	
S/β° thalassaemia	L	88-93	0	>3.5	5-10	
S/β+ thalassaemia	L	50-93	3-30	>3.5	1-10	
S/HPFH	N	65-80	0	<3.5	20-35	
AS/α+ thalassaemia	N/L	28-35	62-70	<3.5	<1	
AS/αº thalassaemia	L	20-30	68-78	<3.5	<1	
SS/α thalassaemia	N/L	88-93	0	<3.5	1–10	

HPFH, hereditary persistence of fetal haemoglobin; L, low; MCV, mean cell volume; N, normal.

Golden Rules to Evaluate Hemoglobin Electrophoresis

- 6) Are all normal hemoglobin variants present? And if present, are they in normal amount?
- 7) Beta thalassemia trait has a higher Hb A2 (>3.6) & beta thalassemia major has a very high Hb F (>80%).
- 8) Is there any abnormal Hb? What is the percentage?
- 9) Sickle cell trait has 35% 45% Hb S. If it is >45%, it is a sickle cell disease (when high Hb A2 then likely S/beta thal).
- 10) Alpha thalassemia reduced other abnormal Hb level.

Heamatology Unit

Hb Electrophoresis

Hospital No.: QC Hb AFSC CONTROL-

ID : Hb AFSC CONTROL-2

Hb Electrophoresis

Fractions	%	Ref. %	
Hb A	51.3	46.7 - 56.9	
Hb F	21.4	17.4 - 22.4	
Hb S	18.3	17.3 - 22.3	
Hb A2	2.3	2.1 - 3.3	
Hb C	6.7	4.6 - 7.0	

Heamatology Unit

Hb Electrophoresis

Hb Electrophoresis

Fractions	%	Ref. %		
Hb A	96.7	96.8 - 97.8	_	
Hb F	0.5	=< 2.0	<	
Hb A2	2.8	1.5 - 3.5		

Heamatology Unit

Hb Electrophoresis

Comment : 28/3/2010 CBC Hb 98 MCV 73 NRBC 34

1 KKUH **Heamatology Unit Hb** Electrophoresis **INSTRUMENT ID: KKUH: 24509** Hospital No.: 233095 063478 ID : Sample No 20 Date : 17/04/2010 Hb S RBC= 2.8 (L). Sickle cell disease, Hb= 7.2 (L). likely (S/beta0) + MCV= 72 (L). HPFH. MCH= 22 (L). RDW= 16 (H). PBF might show Plt= 340 (N). target & NRBCs. Hb F Hb A2 200 220 0 20 40 60 80 100 120 140 160 180 240 260 280 300 Fractions % **Ref.** % Hb F 14.7 Hb S 80.5 Hb A2 4.8

10

Heamatology Unit

Hb Electrophoresis

Heamatology Unit

Hb Electrophoresis

Heamatology Unit

Hb Electrophoresis

28.1
70.8
1.1

Heamatology Unit

Hb Electrophoresis

Fractions	%	Ref. %	
HbA	97.7	95.0 - 99.0	
Hb A2	2.3	1.5 - 3.5	

Frequent sickle cells seen with few target cells.

If Hb A2 is normal with low MCV & MCH, this SCD with likely alpha thalassemia trait.

Beta Thalassaemia Major

- Microcytic RBCs.
- Hypochromic RBCs.
- Many target cells.
- Frequent NRBCs.
- WBCs (2 lymphocytes and eosinophil).

IF Hb F i beta that If NO Hb (B0/B0).

IF Hb F is ~ 95%, this is beta thalassemia major. If NO Hb A, then, (B0/B0).

%	Ref. %
73.9	
22.6	
3.5	
	% 73.9 22.6 3.5

Sickle cell trait with likely alpha thalassemia. Family and molecular studies to confirm.

Comment : Solubility Test: Positive (+ve)

SOLUBILITY TEST

Signature

Fractions	%	Ref. %
Hb F or Hb variant	23.2	
Hb S zone	74.6	
Hb A2	2.2	

Comment : Solubility Test: Positive (+ve)

Sickle cell disease,
(S/S) + HPFH.
(normal MCV, MCH & Hb A2). High Hb F
might protect from
crisis.
Confirm by family &

molecular .

SOLUBILITY TEST

PH: 336 59

Signature

