

Gastrointestinal Physiology Lecture 4

Physiology of the Pancreas Chapter 65; Pages: 825-827

Dr. Hayam Gad Associate Professor of Physiology, College of Medicine, KSU

The Pancreas

The pancreas, which lies parallel to and beneath the stomach is is a large compound gland with most of its internal structure similar to that of the salivary glands. It is composed of:-

_	-			
En		Kino.	nord	ion
		n ne		
			NAI	

Islets of Langerhans

 Secrete insulin (beta cells), glucagon (alpha cells) and somatostatin (delta cells).

Exocrine portion

Acinar gland tissues • The cells lining the acini are serous cells containing zymogen granules, the precursors of pancreatic enzymes (the main source of digestive enzymes).

The Endocrine & Exocrine Pancreas

Pancreatic Secretion

Pancreatic juice •Is secreted in response to the presence of chyme in the upper portions of the small intestine.

Major functions

- Neutralize the acids in the duodenal chyme.
- To prevent damage to duodenal mucosa by acid & pepsin.
- Produce enzymes involved in the digestion of carbohydrate, fat & protein.

Characteristics

•Volume: 1.2-1.5 1/day.
•Isotonic, similar to plasma
•PH= 8 alkaline.

Composition of Pancreatic Secretion

Flow of Pancreatic Secretion into Duodenum

- The combined product of enzymes and NaCO₃ flows through a long pancreatic duct.
- Pancreatic duct joins the hepatic duct immediately before it empties into the duodenum through the papilla of Vater, surrounded by the sphincter of Oddi.

Enzyme Secretion by Acinar Cells

1- Pancreatic proteolytic enzymes (proteases)

- Trypsin, chymotrypsin and carboxypeptidase.
- Trypsin, chymotrypsin are endopeptidases, splitting into peptides of various sizes but do not cause release of individual amino acids.
- Carboxypeptidase is an exopeptidase which splits off amino acids at the carboxyl terminus of the peptide.

carboxyrend

Pancreatic Proteolytic Enzymes (Cont.)

When first synthesized in the pancreatic cells, the proteolytic digestive enzymes are in the <u>inactive forms:</u> trypsinogen, chymotrypsinogen and procarboxypolypeptidase These enzymes become activated only after they are secreted into the intestinal tract.

Trypsinogen is activated by:

• Enteropeptidase (enterokinase), an enzyme secreted by the intestinal mucosa when chyme comes in contact with the mucosa.

 Trypsinogen can be autocatalytically activated by trypsin formed from previously secreted trypsinogen.
 Chymotrypsinogen and procarboxypolypeptidase are activated by trypsin to form chymotrypsin and carboxypolypeptidase.

Activation of Pancreatic Proteolytic Enzymes

Trypsin Inhibitor

03

04

Pancreatic proteolytic enzymes do not become activated until after they have been secreted into the intestine because the trypsin and the other enzymes would digest the pancreas itself.

Trypsin inhibitor is formed in the cytoplasm of the glandular cells that secrete pancreatic proteolytic enzymes.

When a duct is blocked, trypsin inhibitor can not inhibit activation of accumulated enzymes which will be activated and digest the pancreas in few hours.

Activation of Gastrointestinal Proteases

ACTIVATION OF GASTROINTESTINAL PROTEASES

2- Pancreatic Amylase

It hydrolyzes starches, glycogen, and most other carbohydrates (except cellulose) to form mostly disaccharides (maltose) and a few tri-saccharides.

3- Pancreatic Enzymes for Fat Digestion

a.<u>Pancreatic lipase</u> is the most important fat splitting enzyme. It breaks TG into MG and FA in the presence of bile salts and colipase.

b.Cholesterol esterase which liberates cholesterol.
c.Phospholipase A₂ which splits phospholipids into lysolecithin & FA.

End Products of Fat Digestion

Characteristics of Pancreatic Enzymes

Enzyme	Specific Hydrolytic Activity		
Proteolytic			
Endopeptidases			
Trypsin(ogen)	Cleaves peptide linkages in which the carboxyl group is either arginine or lysine		
Chymotrypsin(ogen)	Cleaves peptides at the carboxyl end of hydrophobic amino acids, e.g., tyrosine or phynylalanine		
(Pro)elastase	Cleaves peptide bonds at the carboxyl terminal of aliphatic amino acids		
Exopeptidase			
(Pro)carboxypeptidase	Cleaves amino acids from the carboxyl end of the peptide		
Amylolytic			
α-Amylase	Cleaves α -1,4-glycosidic linkages of glucose polymers		
Lipases			
Lipase	Cleaves the ester bond at the 1 and 3 positions of triglycerides, producing		
	free fatty acids and 2-monoglyceride		
(Pro)phospholipase A ₂	Cleaves the ester bond at the 2 position of phospholipids		
Carboxylesterhydrolase (cholesterol esterase)	Cleaves cholesteryl ester to free cholesterol		
Ribonuclease	Clasura ribanualaia saida into mananualastidas		
Ribonuclease	Cleaves fiboriucieic acids into mononucleotides		
Deoxynbonuclease	Cleaves deoxynbonucleic acids into mononucleotides		

The suffix -ogen or prefix pro- indicates the enzyme is secreted in an inactive form

Secretion of Isosmotic Sodium Bicarbonate Solution.

© Elsevier. Costanzo: Physiology 3E www.studentconsult.com

Mechanism of HCO₃⁻ Secretion

- 1.CO₂ and H₂O combine in acinar cells to form H₂CO₃
- 2. H_2CO_3 dissociated into H⁺ and HCO_3^-
- 3. H⁺ is transported into blood by Na⁺-H⁺ exchanger at basolateral membrane of ductal cells
- 4.HCO₃⁻ is secreted into pancreatic juice by Cl⁻-HCO₃⁻ exchanger at apical membrane of ductal cells
- Absorption of H⁺ causes acidification of pancreatic venous blood

Secretion of Bicarbonate Ions From Pancreatic Ductal cell

Blood around the pancreas; acidic tide

Flow Rate & Pancreatic Secretion

HCO₃ concentration increases with increasing secretion rate

Phases of Pancreatic Secretion

☆ Pancreatic secretion is under neural and hormonal control.
 ☆ It normally results from the combined effects of the multiple basic stimuli which potentiate each other.

	/		
Phase	Cephalic (20%)	Gastric (5-10%)	Intestinal (70-75%)
Stimulus	Smell, taste, chewing and swallowing	Protein, gastric distention	Acid and fatty acids in chyme
Mediator	Ach release by the vagal nerve endings in the pancreas	Vago-vagal reflex	Secretin, CCK and vago-vagal reflex

Pancreatic Secretion is Under Neural and Hormonal Control

Parasympathetic stimulation (through Ach on acinar cells) results in increase in enzyme secretionfluid and HCO₃⁻

Secretin tends to stimulate a HCO_3^- rich secretion by activating ductal cells.

Cholecystokinin stimulates a marked increase in enzyme secretion by stimulating the acinar cells.

Neural and Hormonal Control of Pancreatic Secretion

- Secretin (*purple arrows*) released from the duodenum stimulates the pancreas to release a watery secretion rich in HCO₃⁻.
- Cholecystokinin (*pink arrows*) released from the duodenum causes the pancreas to release a secretion rich in digestive enzymes.
- Parasympathetic stimulation from the vagus nerve (red arrow) causes the pancreas to release a secretion rich in digestive enzymes.

Regulation of Pancreatic Secretion

Hormonal Regulation of Pancreatic Secretion

Secretin

<u>Release:</u> From "S" cells in the mucosa of the duodenum and jejunum (present as presecretin). **Stimulus:** Mainly acid chyme with pH less

than 4.5-5.0 in the duodenum

Cholecystokinin

<u>Release:</u> From "I" cells in the mucosa of the duodenum and upper jejunum. <u>Stimulus:</u> Mainly proteoses, peptones and long-chain fatty acids in the chyme

Functions of Secretin

Functions of Cholecystokinin

Multiplicative or Potentiation Effects of Different Pancreatic Secretion Stimuli

 \blacktriangleright Usually, pancreatic secretions are the result of multiple basic stimuli (Ach, cholecystokinin, and secretin) rather than one stimulus alone. > When all these different stimuli of pancreatic secretion occur at once, then the total secretion is far greater than the sum of the secretions caused by each stimulus separately. \blacktriangleright The stimuli are said to "multiply" or

"potentiate" one another.

Multiplicative or Potentiation Effects of Different Pancreatic Secretion Stimuli (Cont.)

