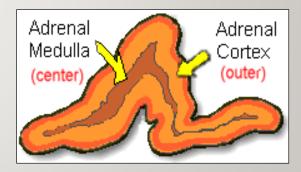

# BIOCHEMISTRY OF CUSHING SYNDROME

**ENDOCRINE BLOCK** 

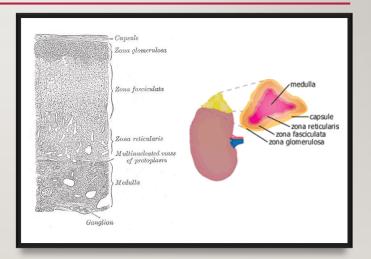
# OBJECTIVES

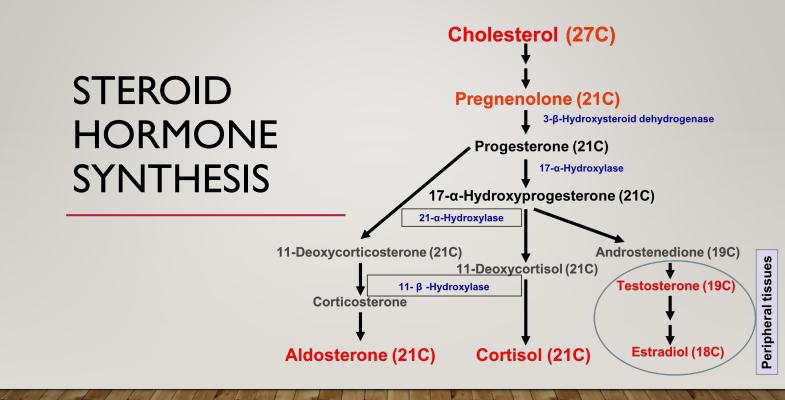
- To identify physiological and biochemical characteristics of Cortisol.
- To understand the diagnostic algorithm for Cushing's Syndrome.
- To understand the interpretation of laboratory and radiological investigations for diagnosis of Cushing's Syndrome.




### Anatomically:

The adrenal gland is situated on the anteriosuperior aspect of the kidney


#### **Histologically:**


The adrenal gland consists of two distinct tissues of different embryological origin, the outer cortex and inner medulla.



## THE ADRENAL CORTEX

- Based on cell type and function, the adrenal cortex comprises three zones:
  - Zona <u>G</u>lomerulosa (the outmost zone) → aldosterone, the principle mineralocorticoid.
  - Zona <u>F</u>asciculata → glucocorticoids, mainly cortisol (95%).
  - Zona <u>R</u>eticularis → sex hormones.





### HYPOTHALAMIC-PITUITARY-ADRENAL (HPA) AXIS

• The <u>hypothalamus</u> secretes corticotropin-releasing hormone (CRH) which stimulates the <u>anterior pituitary gland</u> to synthesis and release ACTH.

• ACTH acts on the zona fasciculata cells  $\rightarrow$  release of glucocorticoids (*Cortisol*).

# **GLUCOCORTICOID FUNCTIONS**

- Glucocorticoids have widespread metabolic effects on carbohydrate, fat and protein metabolism.
- Upon binding to its target, <u>CORTISOL</u> enhances metabolism in several ways:
  - In the liver, Cortisol is an insulin antagonist and has a weak mineralocorticoid action:
    - $\uparrow\uparrow$  Gluconeogenesis  $\rightarrow$  production of glucose from newly-released amino acids and lipids
    - 11 Amino acid uptake and degradation
    - **††** Ketogenesis.
  - In the adipose tissue: Cortisol  $\rightarrow \uparrow\uparrow$  Lipolysis through breakdown of fat.
  - In <u>the muscles</u>: Cortisol  $\rightarrow \uparrow \uparrow$  proteolysis and amino acid release.
  - Conserving glucose: by inhibiting uptake into muscle and fat cells.

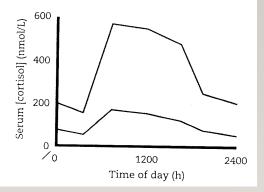
# REGULATION OF ACTH AND CORTISOL SECRETION

### I. Negative feedback control:

- ACTH release from the anterior pituitary is stimulated by hypothalamic secretion of corticotrophin releasing hormone (CRH).
- CRH  $\rightarrow \uparrow$  ACTH  $\rightarrow \uparrow$  [Cortisol]
- ↑[Cortisol] or synthetic steroid suppress CRH & ACTH secretion

### 2. Stress:

(e.g. major surgery, emotional stress) Stress  $\to\uparrow\uparrow$  CRH & ACTH  $\to\uparrow\uparrow$  Cortisol




#### 3. The diurnal rhythm of serum cortisol:

- Highest Cortisol level in the morning (8 9 AM).
- Lowest Cortisol level in the late afternoon and evening (8 - 9 PM).

The diurnal rhythm of cortisol secretion; the area between the curves represents values that lie within the reference range

#### DIURNAL RHYTHM OF CORTISOL SECRETION



# PLASMA CORTISOL-BINDING GLOBULIN (CBG)

- In the circulation, glucocorticoids are mainly protein-bound (about 90%), chiefly to CBG (transcortin).
  - $\uparrow\uparrow$  in pregnancy and with estrogen treatment (e.g. oral contraceptives).
  - $\downarrow \downarrow$  in hypoproteinemic states (e.g. nephrotic syndrome).
- The biologically active fraction of cortisol in plasma is the free (unbound) component.

# CORTISOL AND ACTH MEASUREMENTS

### Serum (Cortisol) and plasma (ACTH):

- Samples must be collected (without venous stasis) between <u>8 a.m. and 9 a.m.</u> and between <u>10 p.m.</u> and <u>12 p.m</u>. because of the diurnal rhythm.
- Temporary  $\uparrow\uparrow$  in these hormones may be observed as a response to emotional stress.

#### **Urinary Cortisol excretion:**

- Cortisol is removed from plasma by the liver → metabolically inactive compounds → excreted in urine mainly as conjugated metabolites (e.g. glucuronides).
- A small amount of cortisol is excreted unchanged in the urine (UFC).
- In normal individuals:
  - Urinary free cortisol (UFC) is < 250 nmol/24 h.

### CAUSES OF ELEVATED SERUM CORTISOL

#### **Increased cortisol secretion:**

- Cushing's syndrome
- Exercise
- Stress, Anxiety, Depression
- Obesity
- Alcohol abuse
- Chronic renal failure

#### Increased CBG:

- Congenital
- Estrogen therapy
- Pregnancy

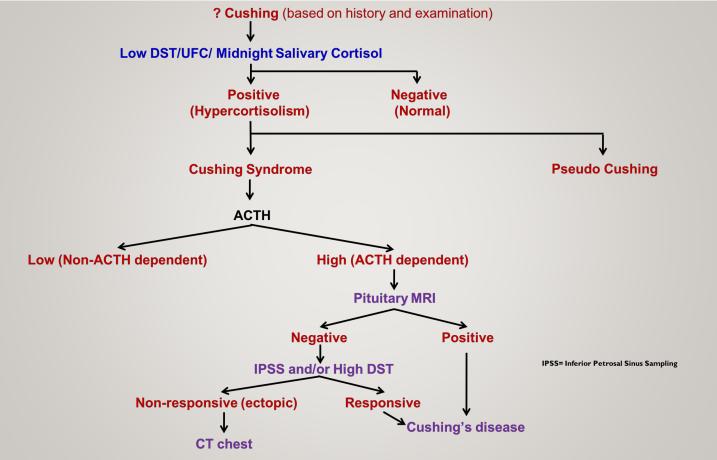
# SYMPTOMS OF CUSHING'S SYNDROME

- Weight gain, central obesity.
- Buffalo's hump.
- Moon face -
- Excessive sweating
- Atrophy of the skin and mucous membranes
- Purple striae on the trunk and legs
- Proximal muscle weakness (hips, shoulders)
- Hirsutism
- The excess cortisol may also affect other endocrine systems  $\rightarrow \downarrow$  libido, amenorrhoea and infertility
- Patients frequently suffer various psychological disturbances ranging from euphoria to frank psychosis.



### SIGNS

- Loss of diurnal rhythm of cortisol and ACTH.
- Hypertension (due to the aldosterone like effects)
- Hyperglycemia or diabetes due to insulin resistance.
- Hypokalemic alkalosis
- $\uparrow$  protein metabolism.
- Impaired immunity.


# INVESTIGATIONS OF SUSPECTED ADRENOCORTICAL HYPERFUNCTION

**A. Screening and confirmatory tests:** to assess the clinical diagnosis of adrenocortical hyperfunction.

#### **B. Tests to determine the cause:** to ascertain:

(a) The site of the pathological lesion (adrenal cortex, pituitary or elsewhere?)

(b) The nature of the pathological lesion.



### SCREENING TESTS

### I. Low-dose DST:

#### **Procedure:**

I mg dexamethasone (DXM) administered at 11-12 PM the night before attending the clinic. Serum cortisol is measured at 8-9 AM.

#### Result:

Cortisol < 50 nmol/L (suppression)→ exclude hypercortisolemia (Cushing Syndrome)

#### Precautions:

Drugs that induce hepatic microsomal enzymes (Phenobarbitone & phenytoin)  $\rightarrow \uparrow$ DXM metabolism and  $\downarrow$  DXM blood level to achieve CRH suppression (false diagnosis of Cushing)

### 2. 24- hour urinary free cortisol:

**<u>Result</u>**: Cortisol < 250 nmol/day  $\rightarrow$  exclude Cushing Syndrome.

**Disadvantage:** incomplete collection of urine  $\rightarrow$  a false-negative result.

### 3. Midnight Salivary Cortisol.

**<u>Result</u>**: Cortisol < 100 ng/dL  $\rightarrow$  exclude Cushing Syndrome.

### **CONFIRMATORY TESTS**

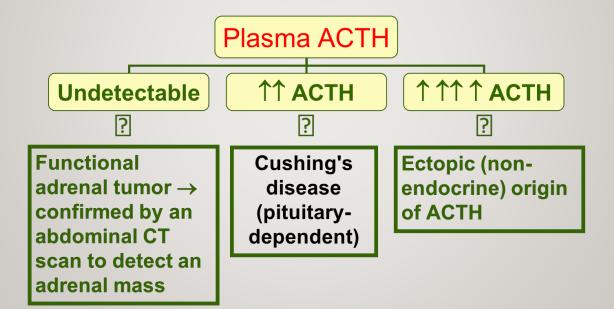
- Positive results of at least two screening tests would confirm the clinical diagnosis.
- Further investigations are required.

# TESTS USED TO DETERMINE THE CAUSE OF CUSHING'S SYNDROME

- To differentiate ACTH-dependent from ACTH-independent: Plasma ACTH (Diurnal rhythm)
- 2. To distinguish between ACTH-dependent causes (Pitutary Vs Lung):
  - a) High-dose DST.
  - b) Inferior Petrosal Sinus Sampling.
- 3. Radiological tests: MRI of pituitary and ultrasound or CT of adrenals.

# CAUSES OF ADRENOCORTICAL HYPERFUNCTION (CUSHING'S SYNDROME)

### • ACTH - dependent:


- 1. ↑ Pituitary ACTH >90% (Cushing's disease).
- 2. Ectopic ACTH by neoplasms <10%.

### • ACTH - independent:

- I. Glucocorticoid therapy.
- 2. Adrenal tumor <20% (adenoma or carcinoma).

### PLASMA ACTH

It should be measured on blood specimens collected at 8-9 a.m. and 8-9 p.m.



### **HIGH-DOSE DST**

It is used to distinguish Cushing's disease from ectopic ACTH secretion.

- 2 mg DXM six-hourly for 48 hours to suppress cortisol secretion.
- Basal (pre-DXM) serum cortisol or 24-hour urine free cortisol is compared with the results at the end of the 48-hour period.
- Suppression is defined as a fall to less than 50 % of basal value.
- About 90 % of patients with Cushing's disease show suppression of cortisol output.
- In contrast, only 10% of patients with ectopic ACTH production (or with adrenal tumors) show suppression.

### OTHER BLOOD TEST

The following blood tests are commonly performed for patients suspected to have Cushing's syndrome:

- Full blood count
- Blood glucose
- Blood electrolytes and pH
- Renal function tests
- Liver function tests

## CASE STUDY

58 years old man was admitted with weight loss and respiratory distress. He had increased pigmentation and BP was 140/80.

Lab tests

| Urea                                         | 8.6   | (2.5-7 mmol/L)   |            |                  |
|----------------------------------------------|-------|------------------|------------|------------------|
| Sodium                                       | 144   | (135-145 mmol/L) |            |                  |
| Potassium                                    | 2.0   | (3.5-4.5 mmol/L) |            |                  |
| Cortisol                                     | 1650  | (150-550 nmol/L) |            |                  |
| Post overnight DMX                           | 1530  | (<50nmol/L)      |            |                  |
| Further investigation revealed the following |       |                  |            |                  |
| DMX suppression test                         | Basal | after 48 h       | after 48   | h                |
|                                              |       | 0.5 mg qid       | 2.0 mg qid |                  |
| Serum cortisol                               | 1350  | 1420             | 1100       | No suppression   |
|                                              | 8 am  | 22.00 pm         |            |                  |
| Plasma ACTH (ng/L)                           | 220   | 180              |            | Ref. range: 7-51 |

### TAKE HOME MESSAGES

- Initial screening for Cushing by 24 h urine free cortisol, low-dose dexamethasone suppression test or midnight Salivary Cortisol.
- Confirmatory tests for Cushing by getting positive results of at least two of the screening tests.
- Tests to determine the cause of Cushing: Plasma ACTH, high-dose dexamethasone suppression test, Inferior Petrosal Sinus Sampling and radiological investigations.
- ACTH-dependent Cushing: due to pituitary causes (Cushing's disease) and due to ectopic production of ACTH.
- ACTH-independent Cushing: due to adrenal adenoma or carcinoma and due to steroid therapy (iatrogenic).

### REFERENCES

- Lecture notes, Clinical Biochemistry, Wiley BlackWell, 9<sup>th</sup> edition, 2013, chapter 9, page 116-133.
- Clinical Chemistry, Principles, Procedures, Correlations, Lippincott Williams & Wilkins, 7<sup>th</sup> edition, 2013, chapter 21, page 453-471.
- Lippincott's Illustrated Reviews: Biochemistry 6<sup>th</sup> edition, Unit III, Chapter 18, Pages 219-244.
- <u>https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/84225</u>