OSTEOPOROSIS and drugs used

Dr. Ishfaq Bukhari Dr. Aliah Alshanwani

2019

OSTEOPOROSIS

By the end of this lecture you will be able to:

Revise the composition, regulation & the remodeling stages of bone turnover
Recognize the interlinks of osteoblastic & osteoclastic function

Relate changes to the development of osteoporosis

- Classify drugs according to their replacement, antiresorptive or anabolic mechanism of action
- Detail the pharmacology of such group of drugs & their clinical utility in combating osteoporosis.

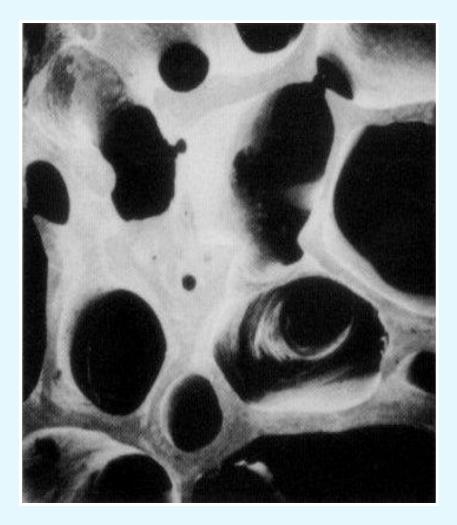
OSTEOPOROSIS: "The Silent Disease"

OSTEOPOROSIS; Key points

"Osteo" is Latin for "bone"

"Porosis" means "porous or full of holes"

"Osteoporosis" means "bones that are full of holes".

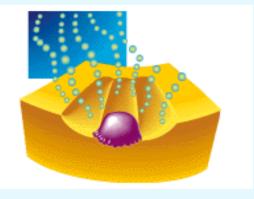

TYPES OF BONE

(1) Cortical – is hard, compact, dense bone (e.g., long-bones of arms & legs)

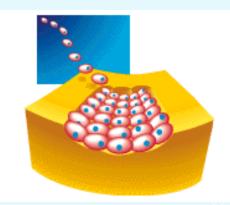
(2) Trabecular – is spongy, porous & flexible bone (example: end of the wrist, hip & the spine).

Activity - Understanding Our Bones

HEALTHY BONE



Bone is living tissue, which is constantly being broken down & rebuilt, a process called remodeling


Bone is renewed like skin, hair & nails.

BONE "REMODELING"

Resorption: removes old bone cells

Formation: replaces old bone with new bone cells.

BONE "REMODELING" OSTEOCLASTS-PHASE 1

Cells called osteoclasts (think "C" for cutting of bone) seek out old bone or damaged bone tissue & destroy it, leaving small spaces (resorption).

BONE "REMODELING" OSTEOBLASTS – PHASE 2

Cells called osteoblasts (think "B" for builder) use minerals like calcium, phosphorus, & vitamin D to fill in the spaces with new bone cells (formation).

BUILD YOUR BONE BANK

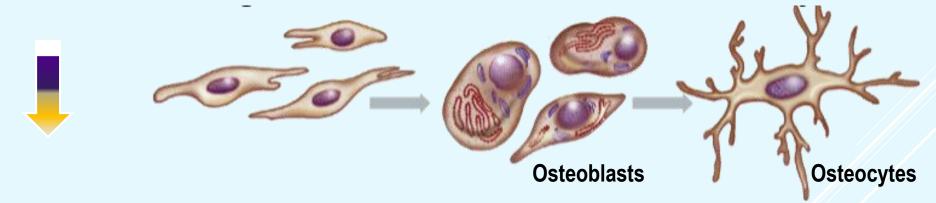
You build bone until about age 30

Steps to building healthy bones include:

Calcium & vitamin D

Limit Caffeine & Alcohol

Exercise

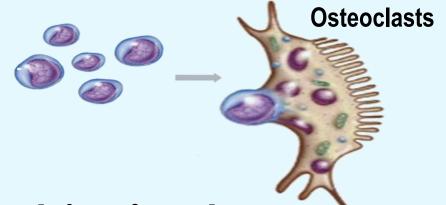

Don't Smoke.

Bone is basically composed of 2 types of tissues

INORGANIC → 65% of mass → Consists of crystalline calcium phosphate salts (hydroxyapatite)

Organic → 35% of mass → Consists of; osteoblasts, osteoclasts & osteocytes)
Bone cells are either; Bone Forming or Bone Resorptive

A. Bone Forming Cells:

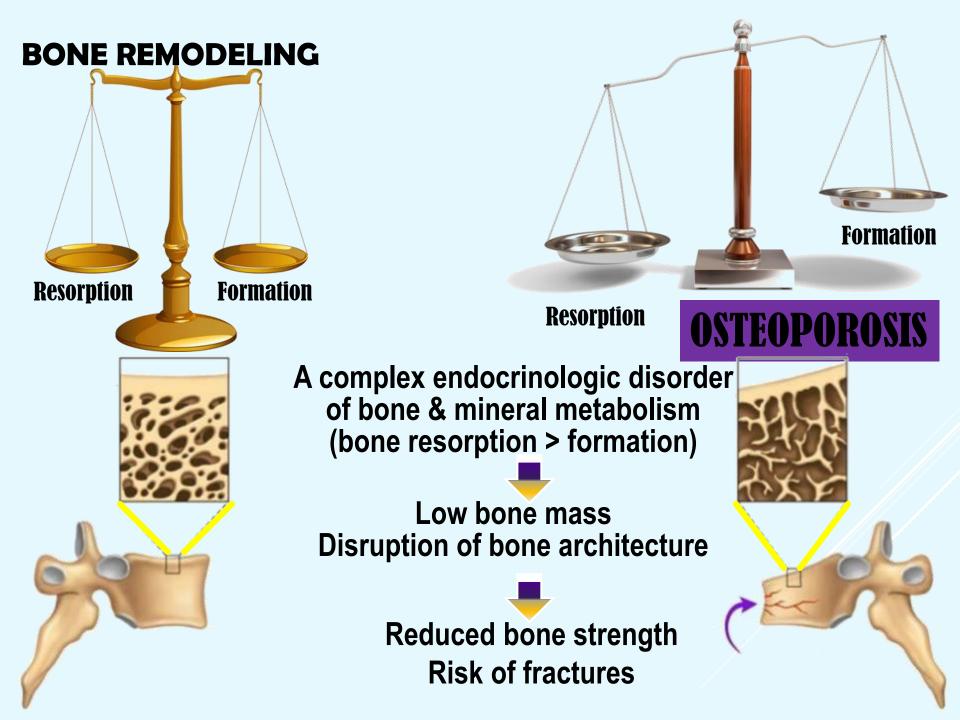

Osteogenic cells \rightarrow mesenchymal in origin \rightarrow are found on all bone surfaces Osteoblasts \rightarrow forms osteoid framework & help in its mineralization.

B. Bone Resorptive Cell: Osteoclasts →

Reside in pits (resorption bays) that form by eaten bone surface.

Secretes lysosomal enzymes (collagenase & metalloproteinase) +

hydrochloric a. → dissolve bone matrix


NORMALLY

bones continuously form & resorb

→ BONE REMODELING

Under control of systemic hormones, body mineral contents & local autocrine-paracrine secretions (Cytokines, Growth Factors, PGs)

It is meant to maintain calcium homeostasis & to renew bone in repair of microdamage & microcracks.

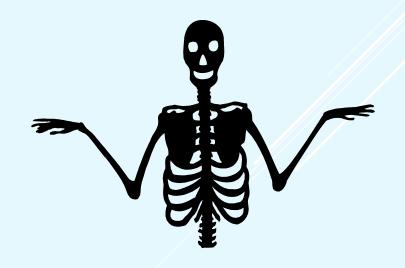
TREATMENT

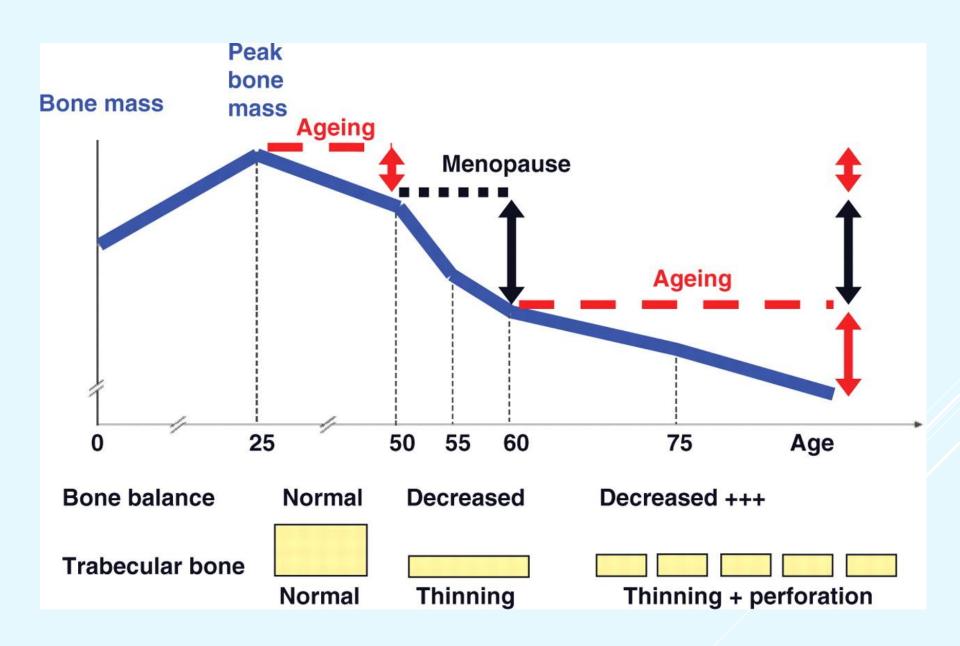
Potentially Modifiable

Current cigarette smoking Diet low in calcium/vitamin D Glucocorticoids, anticonvulsants Excessive alcohol intake Sedentary lifestyle Body weight

Environnemental risks

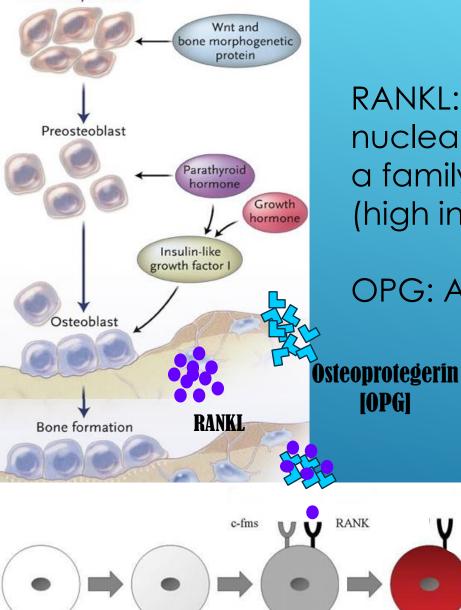
Non-modifiable


Personal history of fracture 1st degree relative has fracture Race (Caucasian or Asian) Elderly age Poor health Dementia Hormonal disorders Neoplastic disorders Metabolic abnormalities



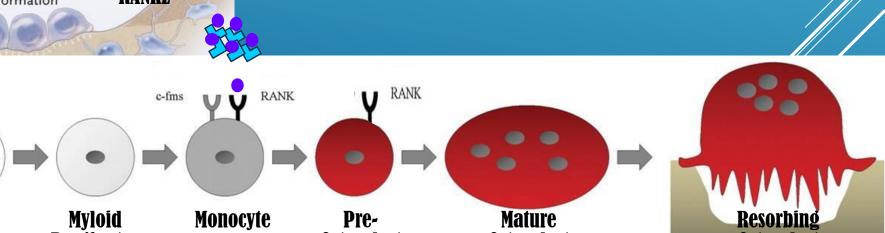
BONE LOSS & AGING

The first 5-15 years after menopause a woman can lose approximately 25 - 30% of trabecular bone & approximately 10 – 15% of cortical bone


Bone loss often occurs without symptoms or warning signs.

Mesenchymal cells

HSC



Proginator

OPG and bone

RANKL: Receptor activator of nuclear factor kappa-B ligand. It's a family member of TNF cytokine. (high in osteoporosis)

OPG: Antiosteoclast

Osteociasi

USIEOCIAS

16

Usteoclasi

Replace what is missing....Ca, Vit D, Na fluoride -Reset back the balance of remodeling

TREATMENT OF OSTEOPOROSIS

Used to enhance the strength by the formation of fluorapatite Is considered only when trabecular bone is \checkmark in presence of normal cortical bones.

ANTIRESORPTIVE AGENTS

- **4** BISPHOSPHONATES
- **4** ESTROGEN ANALOGES
- **4 ANDROGEN ANALOGES**
- **4** SERMS
- **4** CALCITONIN
- **4 RANKL INHIBITORS**

4 STRONTIUM

4 (Parathyroid hormone, TERIPARATIDE

BONE ANABOLIC

(building) AGENTS

BISPHOSPHONATES

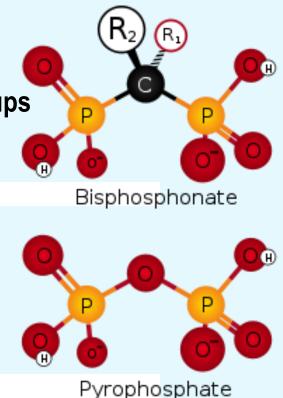
Are compounds that have two phosphonate (PO₃) groups

Non-Nitrogenous

Etidronate

Clodronate

Tildronate


Nitrogenous

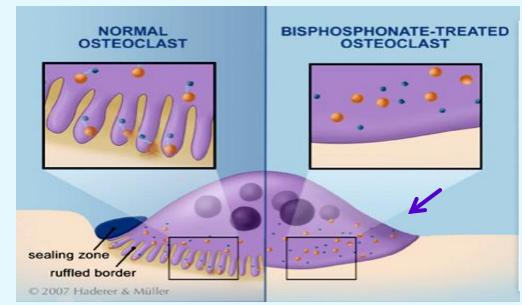
Alendronate po

Ibandronate po

Risedronate po

Zoledronate IV

Mechanism


- Are structurally similar to pyrophosphate
- They preferentially "stick" to calcium → concentrate in bones, bound to hydroxyapatite, decreasing its solubility & making it more resistant to osteoclastic activity
- They prevent bone resorption by inhibiting osteoclast function
- Their relative potencies for osteoclast inhibition is the most with 3rd generation Zoledronate.

BLOCK STEPS IN CHOLESTROL SYNTHETIC PATHWAY IN OSTEOCLAST

that act as signaling molecules responsible for the osteoclastic hydrolytic & phagocytic activity

Stop function → apoptosis (increased death of osteoclast)

It is also taken up by osteoclast → blocks steps in cholesterol synthetic pathway within osteoclast → end up by osteoclast **apoptosis**.

Kinetics

- Poorly abs (< 10%), food impair absorption more + must be given on an empty stomach / infused IV
- u t_{1/2} 1 hr
- Half of absorbed drug accumulates in bones, remainder + excreted unchanged in urine
- 4 In bone it is retained for months, depending on bone turnover.

Indications

- Osteoporosis, 2ndry to menopause, glucocorticoids, ….
- 4 Paget's Disease
- 4 Malignancy- associated hypercalcaemia

Dosing

- Once weekly, or on two consecutive days each month
- Should be taken in upright position (to avoid esophagitis)
- Separate 4 hrs before giving Ca, Mg, AI containing drugs

Note : calcium & vit D supplementation given during bisphosphonate therapy don't ingest it along with bisphosphonate, give a gap as mentioned above...?

ADRs

+GIT irritation; nausea, vomiting, gastritis, ulceration + give large amount of water to avoid risk of the tablet getting stuck in the esophagus ♣Gastro-esophageal reflux <u>+</u> ulcerations → to avoid give on empty stomach while sitting in upright for 30 min **4**Flue-like manifestations (fever, chills) upon IV infusion **4**Osteo-necrosis of the mandible bone of jaw upon long use with IV infusion preparation usually after dental surgical procedures If a dental implant or extraction is already planned, delay bisphosphonate therapy for a few months until healing of the jaw is complete

4 Atrial fibrillation > women with alendronate & zoledronate.

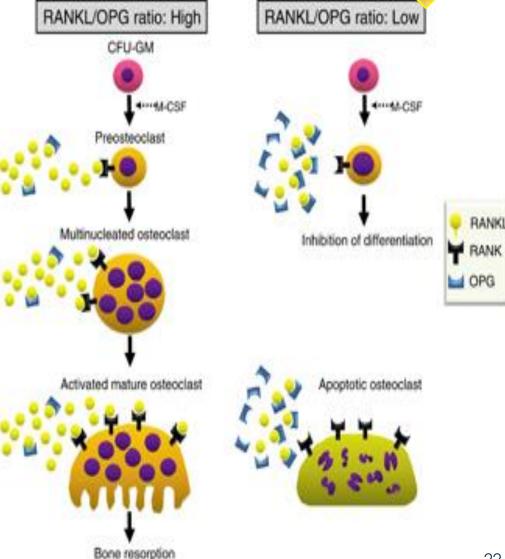
Contraindications

Decreased renal function and Peptic ulcer / esophageal reflux.

RANKL INHIBITORS+

It is a fully human MOA that mimics the activity of osteoprotegerin

Mechanism


- **Blocks RANKL from interacting with RANK** expressed on preosteoclasts
- osteoclasts)
- It binds also to mature osteoclast + its apoptosis
- So net effect \rightarrow \rightarrow bone resorption.

Administration

Subcutaneous every 6 month

Contraindications

In patients with hypocalcemia **Correct Ca & Vit D levels before** starting denosumab.

Mechanism of action of Denosumab:

- -RANKL binds to its receptor RANK on the surface of precursor & mature osteoclasts & stimulates these cells to mature & resorb bone.
- -OPG, which competes with RANKL for binding to RANK, is the physiological inhibitor of RANKL -**Denosumab** binds with high affinity to RANKL, mimicking the effect of OPG.
- Note: Densosumab decreases serum calcium conc, should not be given to patients with hypocalcemia.
- Its extremely expensive & reserved for patients who can not tolerate or respond to bisphosphonate.

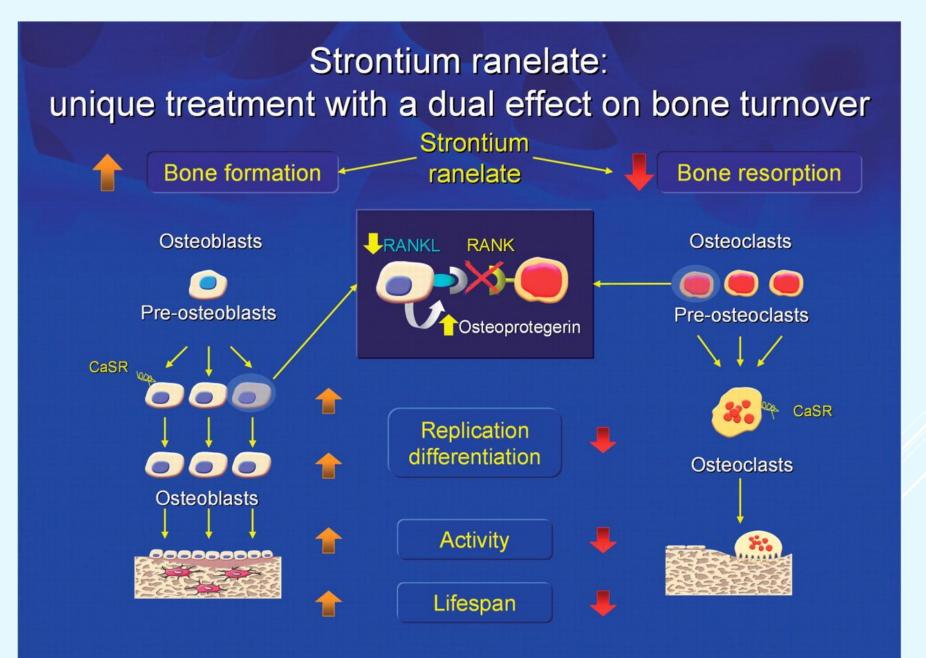
ADRs

- Infections; urinary & respiratory
- 4 Eczema & skin rash
 - pancreatitis.

Sr²⁺, is a divalent cation, resembling Ca²⁺ in atomic & ionic properties It is orally active as **distrontium**

Mechanism

1st drug to possess " dual action " i.e has both anabolic & antiresorptive effects, resulting in a rebalance of bone turnover in favor of bone formation


On Osteoblast;

1- Since it is like Ca, it acts as agonist on Ca Sensing Receptor [CaSR]; which is a GP coupled receptor that <u>enhances</u> differentiation of preoteoblast to osteoblast $\rightarrow \uparrow$ bone formation

2- It <u>stimulates</u> the expression of OPG → ↑ RANKL binding → -ve of osteoclustogenesis → ↓ bone resorption

On Osteoclast;

Acts as agonist on CaSR \rightarrow <u>suppress</u> differentiation of pre-osteoclast to osteoclast $\rightarrow \uparrow$ osteoclast apoptosis $\rightarrow \downarrow$ bone resorption.

Pharmacokinetics

- Binds partially to plasma proteins & strongly to bones
- **↓** t ½ **→** 60 hrs
- Excreted mainly by the kidney

Indications

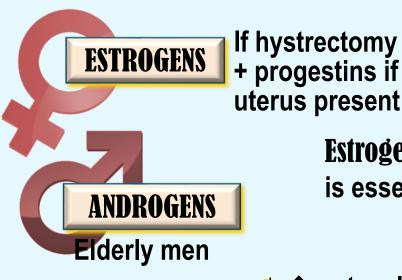
Osteoporosis, 2dry to menopause, glucocorticoids,

Malignancy- associated hypercalcaemia

Contraindications

- In severe renal disease
- In hypersensitivity to it
- In increased risk of venous thromboembolism
- In phenylketonuria

Interactions


- Food specially containing milk+ its products +
- 4 Antacids +
- 4 Oral tetracycline & quinolones chelate it

ADRS

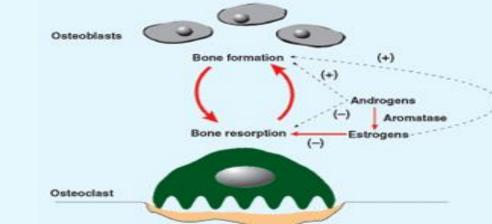
GIT irritation; nausea, vomiting, headache, eczema All resolve in 1st 3 months.

Precautions

4 🕈 osteoclast apoptosis & inhibit osteobalst apoptosis

Menopausal

Symptoms


Estrogen in females & **Androgen** in males

is essential for normal bone remodeling

- ♣ ↑ release of growth factors from osteoblasts
- ♣ ♣ No. & depth of resorption cavities

HRT

For the second secon

Adverse effects: HRT (estrogen): vaginal bleeding, risk of breast cancer & venous thromboembolism.

Menopause /

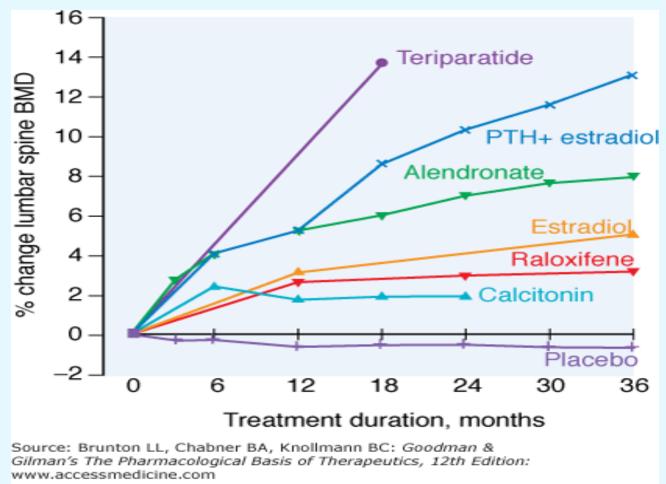
Elderly

SERMS

1st selective estrogen Receptor modulator (SERM) for prevention & treatment of osteoporosis

Mechanism

Anti-estrogens that exhibits partial agonistic action; acting as an agonist in bone & an antagonist in some female sex organs


	Brain	Uterus	Vagina	Breast	Bone	CVS
Estradiol	++	++	++	++	++	++
Raloxifene	—	—	_	—	+	+

Advantages

- ➤ ↑ bone density (2%) & ↓ fracture risk (30%)
- > No stimulation of breast or endometrial tissue
- > No need for progestin in women with uterus
- ≻ ↓ LDL
- Good for women with risk of uterine & breast cancer
- Lower risk of thromboembolism compared to estrogen

Disadvantages

- ➢ May ↑ hot flushes
- ➢ No effect on HDL.

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Relative efficacy of different therapeutic interventions on bone mineral density of the lumbar spine

STEOPOROSIS

