
Note Extra



# Use of Insulin in Diabetes + Management of **Diabetic Ketoacidosis**

#### by the end of this lecture, students should be able to: Define diabetes and mention different types of diabetes Differentiate between difference in treating type I and type II Revised BL diabetes. Understand mechanism of action, secretion, and actions of insulin. Describe different types of insulin analogues Color index: Hadee Be able to recognize the difference in pharmacokinetic profile Important between different types of insulin analogues. Know uses of different insulin analogues **Editing File**

# Mind Map

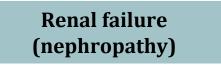


#### **Diabetes mellitus**

- Is a chronic metabolic disorder characterized by high blood glucose level caused by deficiency of insulin or by increased insulin resistance.
- Fasting plasma glucose (no food for 8 hrs)
- Normal <100 mg/dl (5.6 mmol/l).
- **Pre-diabetes** 100-125 mg/dl (5.6-6.9 mmol/L).
- Diabetes if Fasting >126 mg/dl (7 mmol/L)
- or 2h after a meal (post-prandial) > 200 mg/dl (11.1 mmol/L).

### **Types of Diabetes**

#### Type I diabetes (IDDM)


- due to autoimmune or viral diseases
- 10-20% occurrence.
- During childhood or puberty
- β-cells are completely destroyed.
- Absolute deficiency of insulin secretion
- Treated by insulin.

#### Type II diabetes (NIDDM)

- due to genetic susceptibility and other factors (age, obesity).
- 80-90% occurrence
- Over age 35
- Pancreatic β-cells are not producing enough insulin
- Obesity is an important factor.
- Insulin resistance in peripheral tissues.
- Treated by oral hypoglycemic drugs

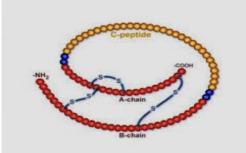
But when the disease progresses we use insulin

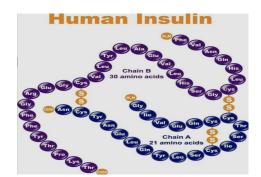
### **Complications of diabetes**



**Blindness (retinopathy)** 

neuropathy


### **Risk of foot amputation**


### Cardiovascular problems Micro and macro vascular diseases

| Characteristic              | Туре 1                                           | Туре 2                                         |
|-----------------------------|--------------------------------------------------|------------------------------------------------|
| Onset (Age)                 | Usually during childhood or puberty              | Usually over age 40                            |
| Type of onset               | Abrupt                                           | Gradual                                        |
| Prevalence                  | 10-20%                                           | 80-90 %                                        |
| Genetic predisposition      | Moderate                                         | Very strong                                    |
| Defects                     | β-cells are destroyed                            | β-cells produce inadequate quantity of insulin |
| Endogenous insulin          | Absent                                           | Present (not enough)                           |
| Insulin resistance          | absent                                           | present                                        |
| Nutritional status          | Usually thin                                     | Usually obese                                  |
| Ketosis                     | Frequent                                         | Usually absent                                 |
| Clinical symptoms           | Polydipsia, polyphagia, polyuria,<br>weight loss | Often asymptomatic                             |
| Related lipid abnormalities | Hypercholesterolemia frequent                    | Cholesterol & triglycerides often elevated     |
| Treatment                   | Insulin injection                                | Oral hypoglycemic drugs                        |

### **Insulin receptors**

- Present on cell membranes of most tissues.
- Liver, muscle and adipose tissue. (peripheral tissues)





## Effects of insulin

| I. Carbohydrate Metabolism:                                                                                                                                                                                                                                                                                                           | II. Fat Metabolism:                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>-↑ glucose uptake &amp; utilization by peripheral tissues.</li> <li>-↑ Glycogen synthesis (glycogen synthase)</li> <li>-↑Conversion of carbohydrate to fats.</li> <li>-↓ Gluconeogenesis.</li> <li>-↓ Glycogenolysis (liver).</li> <li>-↑ Glycolysis (muscle).</li> <li>Net action → decrease blood glucose level</li> </ul> | <ul> <li>Liver:</li> <li>↑ Lipogenesis.</li> <li>↓ Lipolysis.</li> <li>Inhibits conversion of fatty acids to ketoacids. This is why when people don't have enough insulin they generate more ketoacids</li> <li>Adipose Tissue:</li> <li>↑ Triglycerides storage.</li> <li>↑ Fatty acids synthesis</li> <li>↓ Lipolysis</li> </ul> |
| III. Protein Metabolism:                                                                                                                                                                                                                                                                                                              | IV. potassium                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>Liver:</li> <li>–↓ protein catabolism.</li> <li>Muscle:</li> <li>–↑ amino acids uptake.</li> <li>–↑ protein synthesis.</li> </ul>                                                                                                                                                                                            | –↑ potassium uptake into cells<br>Overdose of insulin → hypokalemia.                                                                                                                                                                                                                                                               |
| <ul> <li>protein synthesis.</li> <li>– ↑ glycogen synthesis (glycogenesis).</li> </ul>                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    |

| Routes of administrations of exogenous insulin                                                                                                                                                                                                                                         | Sources of Exogenous Insulin                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Can not be given orally (why ?)<br/>it will be destructed</li> <li>Insulin syringes (s.c., arms,<br/>abdomen, thighs).</li> </ul>                                                                                                                                             | <ul> <li>Beef Insulin<br/>Differs from human insulin by 3<br/>amino acids (antigenic).</li> </ul>                                                                                                                                                 |
| <ul> <li>Portable pin injector (pre-filled).</li> <li>Continuous S.C. infusion (insulin pump):         <ul> <li>More convenient</li> <li>Eliminate multiple daily injection</li> </ul> </li> </ul>                                                                                     | <ul> <li>Porcine Insulin<br/>Differs by one amino acid<br/>(antigenic).</li> <li>To avoid antigenicity, we use<br/>human insulin analogues</li> </ul>                                                                                             |
| <ul> <li>-Programmed to deliver basal rate of insulin. Dose is by IU/day (other drugs doses are by mg)</li> <li>Intravenously (in a hyperglycemic emergency)</li> <li>Under Clinical Trials Inhaled aerosols, transdermal, intranasal.</li> <li>Rotate injection → to avoid</li> </ul> | Disadvantage of insulin pump:<br>If a person increases his<br>activity he/she will develop<br>hypoglycemia and vice versa<br>→ so activity has to be<br>constant to avoid side effects<br>and we monitor the patient<br>by checking blood glucose |
| ■ Rotate injection → to avoid<br>lipodystrophy                                                                                                                                                                                                                                         | level                                                                                                                                                                                                                                             |



Pin injector



Insulin pump

#### Insulin degradation

- Basal level of endogenous insulin is 5-15 μU/ml.
- Half life of circulating insulin is 3-5 min.
- 60% liver & 40% kidney (endogenous insulin)
- 60% kidney & 40% liver (exogenous insulin)

- Prepared by recombinant DNA techniques.
- Less immunogenic.
- Modifications of amino acid sequence of human insulin can change Pharmacokinetics.

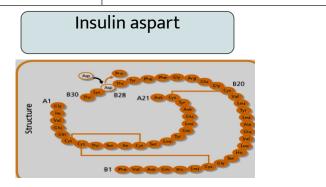
| Types                                              |                                            | eparations (I<br>gues)                            | nsulin                                                                         |
|----------------------------------------------------|--------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|
| 1-Ultra-short acting<br>insulins                   | 2-short acting<br>insulin                  | 3-Intermediate acting<br>insulins                 | 4-Long acting insulins                                                         |
| e.g.Lispro , aspart                                | e.g. regular insulin,<br>humulin R         | e.g. NPH, lente                                   | e.g glargine, detemir                                                          |
| very fast onset of<br>action and short<br>duration | fast onset of action<br>and short duration | Slow onset,<br>intermediate<br>duration of action | Slow onset and long<br>duration of action so<br>they can cover the full<br>day |

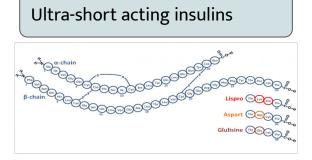
#### If insulin preparation has:

Long <u>duration</u>  $\rightarrow$  risk of **hypoglycemia** 

Short <u>duration</u>  $\rightarrow$  **frequent administration** (3 times per day; one with each meal)

#### Differ in pharmacokinetic properties:


- Rate of absorption (Onset of action).
- Duration of action.


#### These variations are due to:

- Change of amino acid sequence.
- Size and composition of insulin crystals in preparations (monomers, dimers, hexamers).

# **Insulin Analogues**

| Drug                        | Ultra-short acting insulins(Lispro,aspart)                                                                                                                                                                                     |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical<br>characteristics | Clear solutions at neutral pH. Clear $\rightarrow$ can be used IV                                                                                                                                                              |
| Chemistry                   | Do not aggregate or form dimers or hexamers (monomeric analogue).<br>Monomer $\rightarrow$ low molecular weight $\rightarrow$ faster absorption $\rightarrow$ faster onset<br>NB/ physiological insulin is a hexamer           |
| Route and time<br>of admin  | <ul> <li>S.C. (5 -15 min before meal) routine use</li> <li>I.V. in emergency.</li> </ul>                                                                                                                                       |
| Onset                       | Fast onset of action (5-15 min)                                                                                                                                                                                                |
| Peak level                  | Reach peak level 30-90 min after injection.                                                                                                                                                                                    |
| Duration                    | Short duration of action (3-5 h) average: 4 hours                                                                                                                                                                              |
| Usual admin                 | <ul> <li>3 times/day.</li> <li>Mimic the prandial mealtime insulin release (take with every meal. If a patient skips a meal, he/she should skip the dose)</li> </ul>                                                           |
| Indications                 | <ul> <li>Preferred for external insulin pump because they're monomers + clear (Lispro does not form hexamers)</li> <li>used to control postprandial hyperglycemia (s.c.) and emergency diabetic ketoacidosis (i.v).</li> </ul> |





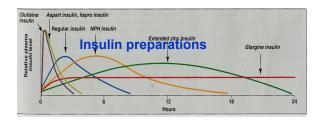
# **Insulin Analogues**

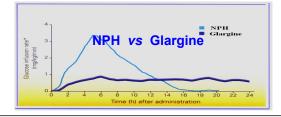
| Insulin Analogues           |                                                                                                                                                                                                                                              |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Drug                        | Short acting insulin (regular insulin)                                                                                                                                                                                                       |  |
| Physical<br>characteristics | <ul> <li>Soluble crystalline zinc insulin</li> <li>Clear solutions at neutral pH.</li> </ul>                                                                                                                                                 |  |
| Chemistry                   | Forms hexamers.<br>This is why i cant use it with the pump                                                                                                                                                                                   |  |
| Route and time<br>of admin  | I.V. in emergency situations.                                                                                                                                                                                                                |  |
| Onset                       | Onset of action 30-45 min (s.c.). onset : 30 min                                                                                                                                                                                             |  |
| Peak level                  | Peak 2-4 h.                                                                                                                                                                                                                                  |  |
| Duration                    | Duration 6-8 h. Duration 8 hours                                                                                                                                                                                                             |  |
| Usual admin                 | 2-3 times/day.                                                                                                                                                                                                                               |  |
| Indications                 | <ul> <li>Control postprandial hyperglycemia (s.c.) &amp; emergency diabetic ketoacidosis (i.v.).</li> <li>Can be used in pregnancy: why?</li> <li>1- no teratogenic effect</li> <li>2- similar to physiological insulin (hexamer)</li> </ul> |  |

|                                   | Ultra-Short acting insulins<br>e.g. Lispro, aspart, glulisine                                        | Short-acting (regular) insulins<br>e.g. Humulin R, Novolin R                          |
|-----------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Physical characteristics          | Clear solution at neutral pH                                                                         | Clear solution at neutral pH                                                          |
| Chemistry                         | Monomeric analogue                                                                                   | Hexameric analogue                                                                    |
| Route & time of<br>administration | S.C. 5 min (no more than 15 min)<br>before meal<br>I.V. in emergency<br>(e.g. diabetic ketoacidosis) | S.C. 30 – 45 min before meal<br>I.V. in emergency<br>(e.g. diabetic ketoacidosis)     |
| Onset of action                   | Fast 5 – 15 min ( S.C )                                                                              | rapid 30 – 45 min ( S.C )                                                             |
| Peak level                        | 30 – 90 min                                                                                          | 2 – 4 hr                                                                              |
| Duration<br>Usual administration  | 3 – 5 hr Shorter                                                                                     | 6 – 8 hr longer ** they have a<br>higher risk of hypoglycemia and<br>hyperinsulinemia |
|                                   | 2 – 3 times/day                                                                                      | 2 – 3 times / day                                                                     |
|                                   | postprandial hyperglycemia & emergency diabetic ketoacidosis                                         | postprandial hyperglycemia & emergency diabetic ketoacidosis                          |

#### Advantages of Ultra-short <u>vs</u> Short Insulin

- Rapid onset of action ( patients will not wait long before they eat )
  - Its duration of action is no longer than 3-4 hrs regardless of the dose:
    - Decreased risk of hyperinsulinemia.
    - Decreased risk of postprandial hypoglycemia


## Intermediate acting insulin


| 8                           |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Drug                        | Isophane (NPH) insulin                                                                                                                                                                                                                                                                                                                                                                   | Lente insulin<br>(Humulin L, Novolin L                                                                                                                                                                                                                   |  |
|                             | NPH, is a Neutral Protamine<br>Hagedorn(complex) insulin in<br>phosphate buffer. recall : protamine<br>was the antidote of heparin<br>NPH insulin is combination of<br><b>protamine &amp; crystalline zinc insulin</b><br>(1:6 molecules). proteolysis release<br>insulin                                                                                                                | Mixture of:<br>- 30% semilente insulin<br>(amorphous precipitate<br>of zinc insulin in acetate buffer)<br>- 70% ultralente insulin<br>(poorly soluble crystal of zinc<br>insulin)<br>- should not be mixed with<br>insulin in the same<br>syringe.(boys) |  |
| Physical<br>characteristics | Turbid suspension at neutral pH                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          |  |
| Route and time of<br>admin  | Given subcutaneously only not i.v<br>Can not be used in ketoacidosis or emergency                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                          |  |
| Onset                       | Onset of action 1-2 h. Average: 1 hour                                                                                                                                                                                                                                                                                                                                                   | Delayed onset of action (1-3 h)                                                                                                                                                                                                                          |  |
| Peak level                  | Peak serum level 5-7 h.                                                                                                                                                                                                                                                                                                                                                                  | Peak serum level 4-8 h.                                                                                                                                                                                                                                  |  |
| Duration                    | Duration of action 13-18 h average: 16<br>hours                                                                                                                                                                                                                                                                                                                                          | Duration of action 13-20 h.<br>Prandial and basal insulin replacement                                                                                                                                                                                    |  |
| Insulin mixtures            | <ul> <li>NPH/regular insulin         <ul> <li>75/25,70/30,50/50</li> <li>(NPL= NPH / lispro) (NPA= NPH / aspart)</li> </ul> </li> <li>NPL &amp; NPA have the same duration as NPH</li> <li>Have two peaks. 1st → lispro/ aspart 2nd → NPH</li> <li>Why do i do these combinations ? NPH takes 1-2 hrs to work, so we give another drug that works temporarily until NPH works</li> </ul> | Morning Alternation Evening Night                                                                                                                                                                                                                        |  |

## Long acting insulins Insulin glargine (lantus), Insulin detemir (Levemir)

| Drug                        | Insulin glargine (lantus)                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical<br>characteristics | • <b>Clear</b> solution BUT forms <b>precipitate</b> (hexamer) at injection site.                                                                                                                                                                                                                                                                                                                                    |
| Route and<br>time of admin  | <ul> <li>Given s.c., not intravenously</li> <li>Should not be mixed with other insulins in the same syringe. It is sensitive to PH and may precipitate in the syringe</li> </ul>                                                                                                                                                                                                                                     |
| Onset                       | <ul> <li>Slow onset of action 2 h.</li> <li>absorbed less rapidly than NPH &amp; Lente insulin.</li> </ul>                                                                                                                                                                                                                                                                                                           |
| Peak level                  | <ul> <li>Maximum effect after 4-5 h</li> </ul>                                                                                                                                                                                                                                                                                                                                                                       |
| Duration                    | • Prolonged duration of action (24 h). Covers the whole day                                                                                                                                                                                                                                                                                                                                                          |
| Usual admin                 | <ul> <li>Once daily</li> <li>produce broad plasma concentration plateau (low continuous insulin level).</li> <li>Glargine must be used in regimens with rapid or short acting insulins.</li> </ul>                                                                                                                                                                                                                   |
| Advantages                  | <ul> <li><u>Advantages over intermediate-acting insulins:</u></li> <li>1. Constant circulating insulin over 24 hr with no peak (peakless profile).</li> <li>2. Produce <u>flat</u> prolonged hypoglycemic effect.</li> <li>3. Safer than NPH &amp; Lente insulins ( reduced risk of nocturnal hypoglycemia).</li> <li>4. Clear solution(not require resuspension before use)</li> </ul> Mimics basal insulin release |
| Uses                        | Used in type 1 and type 2 diabetes.                                                                                                                                                                                                                                                                                                                                                                                  |

- Peak → maximum effect
- Peakless → it is an advantage because it mimics basal insulin release and NO
   RISK OF HYPOGLYCEMIA
- \*\* which insulin preparation mimics basal insulin release? Long acting insulins





## **Insulin Dosing considerations**

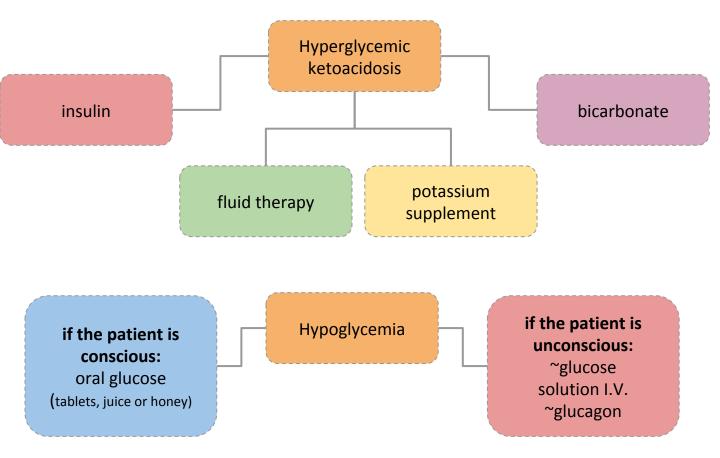
- Blood glucose monitoring is required in all patients receiving insulin
- Rotate injection sites within the same region.
- Insulin should be **stored in refrigerator and warm up to room temperature** before use.

## **Complications of Insulin Therapy:**

- Hypoglycemia
- Hypersensitivity reactions.
- Lipodystrophy (a buildup of fatty tissue) at the injection sites.
- Weight gain (due to anabolic effects of insulin )
- Insulin resistance
- Hypokalemia

## **DR.'s Summary**

#### Insulin analogues are used to treat type I diabetes.

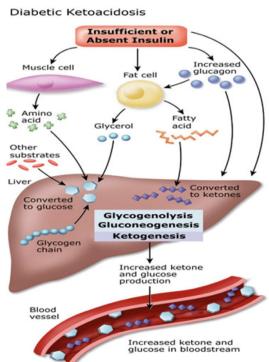

**Fast** acting insulins (lispro, aspart), given s.c. or i.v., produce fast action, used to mimic postprandial insulin.

**Short** acting insulin (Regular insulin), given s.c. or i.v. produce rapid action, used to mimic postprandial insulin.

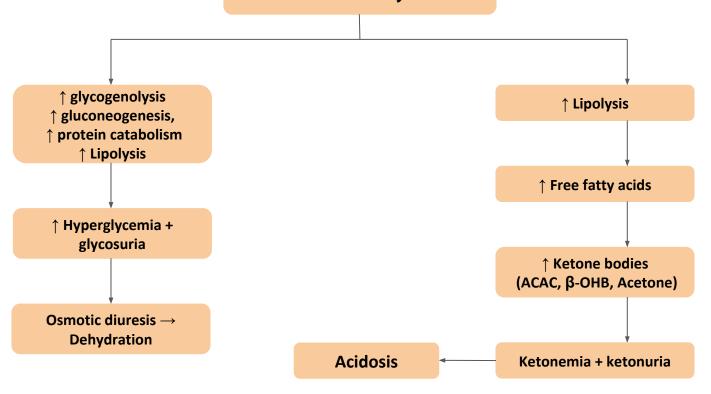
**Intermediate** acting insulin (lente, Isophane) produce slower action, than regular insulin, given s.c. **not i.v.** 

**Long** acting insulins (glargine, detemir) produce constant circulating insulin over 24 hr with no peak (peakless profile), s.c. not i.v.






## Diabetic ketoacidosis


- Is a serious acute emergency situation that requires admission to hospital with a risk of death.
- It develops as a result of insulin deficiency
- It is a characteristic feature of type I diabetes but may occur with type II especially during Stress.

## metabolic changes

- Carbohydrates
- ↑ Glycogenolysis
- ↑ Gluconeogenesis
- Protein
- ↑ proteolysis thus providing amino acid as precursors for gluconeogenesis.
- Fats:
- ↑ Lipolysis & ketogenesis
- Fat breakdown to free fatty acids then to acetyl-CoA that is converted to ketone bodies
- Acetoacetic acid, β-hydroxybutyric acid and acetone (↑ ketogenesis).
- Hypoglycemia is more serious than hyper.
- BOTH hyper and hypo can lead to coma



#### Insulin deficiency lead to



## Diabetic ketoacidosis

- Hyperglycemia-induced glucosuria, osmotic diuresis & severe fluid loss.
- Fluid loss induces dehydration & electrolyte imbalance.
- Metabolic acidosis induces hyperventilation.

## **Characters of Diabetic ketoacidosis**

| <ul><li>Hyperglycemia</li><li>Glucosuria</li></ul> | <ul><li>Polydipsia (increased drinking).</li><li>Dehydration</li></ul> |
|----------------------------------------------------|------------------------------------------------------------------------|
| Osmotic diuresis                                   | • Electrolyte imbalance                                                |
| • Polyuria                                         | • Ketogenesis (ketonemia, ketonuria)                                   |
| • Thirst                                           | Metabolic acidosis                                                     |
|                                                    |                                                                        |

### Clinical symptoms for diabetic ketoacidosis

- Classic features of hyperglycemia (thirst, polyuria)
- Nausea, vomiting, abdominal pain
- Tachycardia
- Kussmaul–Kien respiration (rapid & deep).
- Ketotic breath (fruity, with acetone smell)
- Mental status changes (confusion, coma)

### Diagnostic Criteria in diabetic ketoacidosis

- Blood glucose level > 250 mg/dl
- Arterial pH < 7.35
- Serum bicarbonate level < 15 mmol/L
- Ketonemia
- Ketonuria

| Lines of treatment of diabetic |                     |
|--------------------------------|---------------------|
| ketoacidosis                   | Treatmen<br>symptom |
| Adequate correction of :       |                     |

Dehydration (Fluid therapy) Hyperglycemia (Insulin) Electrolyte deficits (Potassium therapy) Ketoacidosis (Bicarbonate therapy)

nt is natic

## **Treatment of diabetic ketoacidosis**

## Fluid therapy (Rehydration)

- Restore blood volume and perfusion of tissues. First step
- Infusion of isotonic saline (0.9% sodium chloride) at a rate of 15–20 ml/kg/hour or lactated Ringer solution..

## Insulin therapy (Short acting insulin) We can use ultra short insulin but regular insulin is preferable

- Regular insulin, should be administered by means of continuous intravenous infusion in small doses through an infusion pump (0.1 U/kg/h).<sup>Low rate of infusion</sup>
- Subcutaneous absorption of insulin is reduced in DKA because of dehydration; therefore, using intravenous routes is preferable.
- Insulin stops lipolysis and promotes degradation of ketone bodies.

#### **Potassium therapy**

- potassium replacement must be initiated.
- potassium is added to infusion fluid to correct the serum potassium concentration. Sometimes its used and sometimes not, depending on the concentration in blood.

#### **Bicarbonate therapy**

\*\* not corrected unless PH is less than 7

- Correct for metabolic acidosis
- bicarbonate therapy should be used only if the arterial pH < 7.0 after 1 hour of hydration, (sodium bicarbonate should be administered every 2 hours until the pH is at least 7.0).

#### Why do we use IV insulin therapy?

- Rapid onset
- Better distribution (the patient is dehydrated, so if we inject him/her subcutaneously the drug won't distribute)

#### Only in girls slides

# Hypoglycemia

| Info.       | <ul> <li>Blood sugar of less than 70 mg/dl is considered hypoglycemia.</li> <li>Is a life threatening disorder that occurs when blood glucose level becomes &lt; 50 mg/dl.</li> <li>One of the common side effects of insulin in treating type I diabetes.</li> <li>Can it happen to patients with type 2? Depending on the type of oral hypoglycemic (drugs that increase insulin release) -next lecture-</li> </ul>                                                                                                                                                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Causes      | <ul> <li>Overdose of insulin or oral hypoglycemic drugs (sulfonylureas - meglitinides).</li> <li>Excessive physical exercise</li> <li>Missed or delayed meal.</li> <li>Hypoglycemia can be an early manifestation of other serious disorders (sepsis, congenital heart disease, brain hemorrhage).</li> <li>**RULE : IF YOU MISS A MEAL, MISS THE DOSE.</li> </ul>                                                                                                                                                                                                   |
| Characters  | <ul> <li>Autonomic features <ul> <li>↑ sympathetic: tachycardia, palpitation, sweating, anxiety, tremor.</li> <li>↑ parasympathetic: nausea, vomiting.</li> </ul> </li> <li>Neurological defects: <ul> <li>Headache, visual disturbance, slurred speech, dizziness.</li> <li>Tremors, mental confusion, convulsions.</li> <li>Coma due to ↓ blood glucose to the brain.</li> </ul> </li> </ul>                                                                                                                                                                       |
| Precautions | <ul> <li>Hypoglycemia can be prevented by:</li> <li>Monitoring of blood glucose level (blood sugar level should be checked routinely).</li> <li>Patients should carry glucose tablets or hard candy to eat if blood sugar gets too low.</li> <li>Diabetic patient should wear a medical ID bracelet or carry a card.</li> <li>Patient should not skip meals or eat partial meals.</li> <li>Patient should eat extra carbohydrates if he will be active than usual</li> <li>Be careful with b-blockers as they can mask the manifestations of hypoglycemia</li> </ul> |

| Treatment of Hypoglycemia                        |                                                                                                                                                 |  |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Conscious patient:                               | Unconscious patient:                                                                                                                            |  |
| Sugar containing beverage or food (30 g orally). | <ul> <li>Glucagon (1 mg S.C. or I.M.)</li> <li>20-50 ml of 50% glucose solution I.V.</li> <li>infusion (risk of possible phlebitis).</li> </ul> |  |

| <b>DR.'s Summary</b> |
|----------------------|
|----------------------|

| Hyperglycemic ketoacidosis                                                     | Hypoglycemia                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| treated by insulin, fluid therapy,<br>potassium supplement and<br>bicarbonate. | treated by oral glucose tablets, juice<br>or honey (if the patient is conscious)<br>and by 20-50 ml of 50% glucose<br>solution I.V. infusion or glucagon (1<br>mg, S.C. or I.M.) (if the patient is<br>unconscious). |

|                        | Hypoglycemic coma<br>(Excess insulin)            | Hyperglycemic coma Diabetic<br>ketoacidosis (Too little<br>insulin) |
|------------------------|--------------------------------------------------|---------------------------------------------------------------------|
| Onset                  | Rapid                                            | Slow - Over several days                                            |
| Acidosis & dehydration | No                                               | Ketoacidosis                                                        |
| B.P.                   | Normal                                           | Subnormal or in shock                                               |
| Respiration            | Normal or shallow                                | air hunger                                                          |
| Skin                   | Pale and sweating                                | Hot & dry                                                           |
| CNS                    | Tremors, mental confusion, sometimes convulsions | General depression                                                  |
| Blood glucose          | Lower than 70 mg/100cc                           | Elevated above 200 mg/100cc                                         |
| Ketones                | Normal                                           | Elevated                                                            |



# 1- which of the following insulin preparations can be used intravenously in diabetic ketoacidosis?

- A- Isophane
- B- Lente
- C- Lispro
- D- Glargine

#### 2- a doctor prescribed insulin to a diabetic patient and warned him to never mix it with other insulins in the same syringe when administering it at home. Which insulin did the doctor prescribe?

- A- Lente
- B- Humulin R
- C- Isophane (NPH)
- D- Glargine

#### 3- which of the following is true about Insulin glargine?

- A- it is a monomeric analogue.
- B- can be given intravenously in diabetic ketoacidosis.
- C- turbid suspension.
- D- forms precipitate at injection site.

# 4- having a peakless profile is a characteristic of which one of the following insulins?

- A- Glargine
- B- Lispro
- C- Isophane (NPH)
- D- Novolin L

#### 5- what is the first step in the management of diabetic ketoacidosis?

- A- Insulin therapy
- B- potassium therapy
- C- Fluid therapy
- D- Bicarbonate

## 6- which of the following is used to control postprandial hyperglycemia in type I diabetes?

- A- Humulin R
- B- Isophane (NPH)
- C- Detemir
- D- Lente

#### 7- a patient came to the ER with palpitations , sweating , slurred speech and mental confusion. His blood sugar was 60 mg\dl. What is the treatment of choice if the patient is still conscious?

A-1 mg of Glucagon subcutaneously.

- B- 40 ml of 50% glucose solution intravenously.
- C-1 mg of Glucagon intramuscular.
- D- 30 g of sugar containing beverage orally.

A 10 year old diabetic child came to the ER with tachycardia, hyperventilation and fruity smelling breath. His parents told the doctors that he has been passing urine more than usual and that he's constantly thirsty. Investigations showed the following:

SAQ

blood glucose level 260 mg\dL Arterial pH is 7.0 Serum bicarbonate level 10 mmol/L Blood pressure 97/60 mmHg

What is the name of the condition?

Diabetic ketoacidosis

#### What is the appropriate management for this condition?

- 1- fluid therapy (Rehydration) with isotonic saline.
- 2- Insulin therapy Intravenously.
- 3- potassium therapy.
- 4- bicarbonate therapy if the arterial pH is <7.0 after 1 hour of hydration.

#### Answers :

- 9-∀ 2-C 4-∀ 3-D
- Z-D
- J-C



## Team Leaders:

Majed Aljohani

Layan AlMana

## **Team Members:**

Dana AlRasheed Munira AlHadlag Ghada AlMohanna AlAnoud AlMufarraj Ghada AlQarni Dana AlKadi Noura AlOthaim

Renad AlGhuraibi Hind AlOriaer Rawan AlTamimi Sara AlSultan Shahad AlTayash Khulood AlWehaibi

**References:** 

Doctors' slides and notes



