

HIV Human Immunodeficiency virus **AIDS** Acquired immune deficiency syndrome

Objectives

- To know the modes of transmission of HIV
- ☐ To understand HIV interactions with CD4 positive helper lymphocytes
- To understand the mechanisms involved in immunodeficiency associated with HIV
- To know the course of immunological events from the time of infection with HIV until the development of AIDS

Done by: Rahaf AlShammari Abdulaziz AlDergham Abdulelah AlDossari Abdulrhman AlAujan

Team 437

Color index: Important Note

Transmission

Modes of infection:

Sexual transmission at genital or colonic mucosa

- Homosexuals are more prone to injury due to high vascular supply to the anus (the receptive is at higher risk).
- Circumcision is a protective factor
- It is not transmitted by kissing nor by mosquito bite.

How HIV enters cells?

- gp120 env protein binds to CD4 molecule
 - CD4 found on T-cells macrophages, and microglial cells
 - Binding to CD4 is not sufficient for entry
- gp120 env protein binds to co-receptor
 - Chemokine receptors
 - O CCR5 and CXCR4 receptors Deletion of CCR5 gene will decrease the possibility to have HIV.
- Binding of virus to cell surface results in fusion of viral envelope with cell membrane
- Viral core is released into cell cytoplasm

Viral-host Dynamics

- About 10¹⁰ (10 billion) virions are produced daily
- Average lifespan of an HIV virion in plasma is ~6 hours
- ➤ Average life-span of an HIV-infected CD4 lymphocytes is ~1.6 days
- > HIV can lie dormant within a cell for many years, especially in resting (memory) CD4 cells, unlike other retroviruses

- 1. HIV (retrovirus) enters cell ①
- 2. Reverse Transcriptase makes DNA copy of RNA®
- 3. Viral DNA forms provirus with host DNA ?
 - Viral DNA makes mRNA
 - mRNA makes HIV proteins
 - HIV proteins become HIV capsid
 - mRNA is collected inside of HIV capsid forming new HIV
 - > New HIV leaves cell and wraps itself in host membrane (envelope)

HIV entering and leaving a human cell

General principles of viral-host interactions

- Host: mounts HIV-specific immune responses CD8 & CTLs mainly
 - Cellular (cell-mediated) most important
 - o Humoral (antibody-mediated)
- **Virus:** <u>subverts the immune system</u>
 - Infects CD4 cells that control normal immune responses
 - Integrates into host DNA
 - O High rate of mutation this is why we use a lot of drugs
 - Hides in tissue not readily accessible to immune system

Cellular immune response to HIV

CD8 Cytotoxic T lymphocyte (CTL) once get exhausted ⇒ patient will reach the end stage "AIDs"

- Derived from naïve T8 cells, which recognize viral antigens in context of MHC class I presentation
- Directly destroy infected cell
- Activity augmented by Th1 response

CD4 Helper T Lymphocyte (Th)

- Plays an important role in cell-mediated response
- Recognizes viral antigens by an antigen presenting cell (APC)
 - Utilizes major histocompatibility complex (MHC) class II
- Differentiated according to the type of "help"

☐ Stimulates NK cell to destroy infected cell

- o Th1 activate Tc (CD8) lymphocytes, promoting cell-mediated immunity
- Th2 activate B lymphocytes, promoting antibody mediated immunity

Humoral immune response to HIV Antibodies response is less effective than the cellular

Neutralization	
☐ Antibodies bind to surface of virus to prevent attachment to target cell	
Antibody-dependent cell-mediated cytotoxicity (ADCC)	
☐ Fc portion of antibody binds to NK cell	

Cells infected by HIV

- Numerous organ systems are infected by HIV:
 - o Brain: macrophages and glial cells
 - Lymph nodes and thymus: lymphocytes and dendritic cells
 - o Blood, semen, vaginal fluids: macrophages
 - o Bone marrow: lymphocytes
 - Skin: langerhans cells
 - o Colon, duodenum, rectum: chromaffin cells
 - Lung: alveolar macrophages

General principles of immune dysfunction in HIV

- All elements of immune system are affected
- Advanced stages of HIV are associated with substantial disruption of lymphoid tissue
 - Impaired ability to mount immune response to new antigen
 - Impaired ability to maintain memory responses
 - Susceptibility to opportunistic infections

Mechanisms of CD4 depletion and dysfunction

Direct	Indirect
 Elimination of HIV-infected cells by virus-specific immune responses Loss of plasma membrane integrity because of viral budding 	 Syncytium formation Apoptosis Autoimmunity

Syncytium formation

- Observed in HIV infection, most commonly in the brain \star
- Uninfected cells may then bind to infected cells due to viral gp 120 \star

- This results in **fusion** of the cell membranes and subsequent **syncytium formation**. \star
- These syncytia are highly unstable and die quickly \star

Role of Cellular Activation in Pathogenesis of HIV

- HIV induces immune activation
 - Which may seem paradoxical because HIV ultimately results in severe immunosuppression
- Activated T-cells support HIV replication
 - Intercurrent infections are associated with transient increases in viremia
 - Accounts for why TB worsens underlying HIV disease

Role of Cytokine Dysregulation in Pathogenesis of HIV

- HIV is associated with increased expression of pro-inflammatory cytokines
 - o TNF-alpha, IL-1, IL-6, IL-10, IFN-gamma
- HIV results in disruption and loss of immunoregulatory cytokines

- IL-2, IL-12 very imp. to compact the infection
 - o Necessary for modulating effective cell-mediated immune responses (CTLs and NK cells)

Primary infection

- 70-80% symptomatic, 3-12 weeks after exposure
- Fever, rash, cervical lymphadenopathy, aseptic meningitis, encephalitis, myelitis, polyneuritis
- Surge in viral RNA copies to >1 million
- Fall in CD4 count to 300-400
- Recovery in 7-14 days \triangleright

Seroconversion

- Median 8 weeks after infection \triangleright
- Level of viral load post seroconversion correlates with risk of progression of disease

Asymptomatic phase

- Remain well with no evidence of HIV disease except for generalized lymphadenopathy \triangleright
- Fall of CD4 count by about 50-150 cells per year

Balance between HIV & immune system but it will not stop infecting the CD4 cells, gradually decrease every year until reach the end stage.

CD4 T-cell Count and Progression to AIDS

- Gradual reduction in number of circulating CD4 cells is inversely* correlated with the viral load
- Any depletion in numbers of CD4 cells renders the body susceptible to opportunistic infections

Window period: Untreated clinical course

The period between getting HIV infection and appearing of the antibodies.

Viremic & contiguous period, but we can't tell that the patient is infected!

Weeks since infection

Source: S Conway and J.G Bartlett, 2003

Natural history of HIV

Laboratory markers of HIV infection

Viral load

Marker of HIV replication rate

Increased viral load \Rightarrow worse prognosis

CD4 count

Marker of immunologic damage

Diagnosis

 $most\ sensitive \Rightarrow PCR$

Antibody test, ELISA

used for monitoring
HIV RNA viral load

Management

- Treatment recommended when symptomatic or CD4 count below 200
- Earlier if high viral load, rapidly falling CD4 count, hepatitis C co-infection
 - Antiviral therapy
 - Reverse transcriptase inhibitors
 - Protease inhibitors
 - **Fusion inhibitors**

Take home message Dr. Reem said: window period and CD4 are the most important

- Infection with HIV usually occurs by sexual transmission, blood transfusion, \triangleright mother to infant or accidental exposure.
- HIV targets the immune system and primarily infects CD4 positive lymphocytes \triangleright
- Immunodeficiency associated with HIV infections is mainly due to reduction in \triangleright CD4 positive helper lymphocyte numbers.
- Increased viral load, significant reduction in CD4 lymphocytes and opportunistic \triangleright infections are the hallmarks of progression to AIDS.

Quiz

1- Naïve T8 cells recognize viral antigens by:

A-MHCI

B- MHC II

C-A&B

D- None of the above

2-Syncytium Formation is commonly observed in which organ?

A- Lung

B- Duodenum

C- Brain

D- Bone marrow

3- Th2 activate which type of immunity?

A- Cell mediated immunity

B- Antibody mediated immunity

4- HIV is results in loss of:

A- IL-1

B- IL-2

C-IL6

D- IL-10

5- Which of the following is a direct mechanism of CD4 depletion?

A- Elimination of HIV-infected cells by virus-specific immune responses

B- Syncytium formation

C- Apoptosis

D-Autoimmunity

.2

R . 8

.2 ·I

YUSMGLS:

Thanks for checking our team