
Pathogenesis of Cerebral Infarction at Cellular & Molecular Levels

Objectives:

By the end of this lecture, the students should be able to:

- Identify the possible cell death mechanisms implicated in the pathogenesis of ischemic brain injury
- Acquire the knowledge of the important role played by **oxidative stress and free radicals** in the pathogenesis of cerebral infarction
- Understand the various factors involved in ischemia-induced metabolic stress
- Identify the Neurochemical changes involved in cerebral ischemia

Cerebral Ischemia (Strokes) subtypes

http://www.uptodate.com/contents/overview-of-the-evaluation-of-stroke

Risk factors of strokes

- There are a number of risk factors for stroke:
 - Some increase the risk of one type of stroke (hemorrhagic or ischemic).
 - Some increase the risk of both types.
 - Occasionally, strokes occur in people who have no risk factors.

Risk factors of strokes

Ischemic stroke risk factors

Age older than 40 years Heart disease High blood pressure Smoking Diabetes High blood cholesterol levels Illegal drug use **Recent childbirth** Previous history of transient ischemic attack Inactive lifestyle and lack of exercise Obesity Current or past history of blood clots Family history of cardiac disease and/or stroke

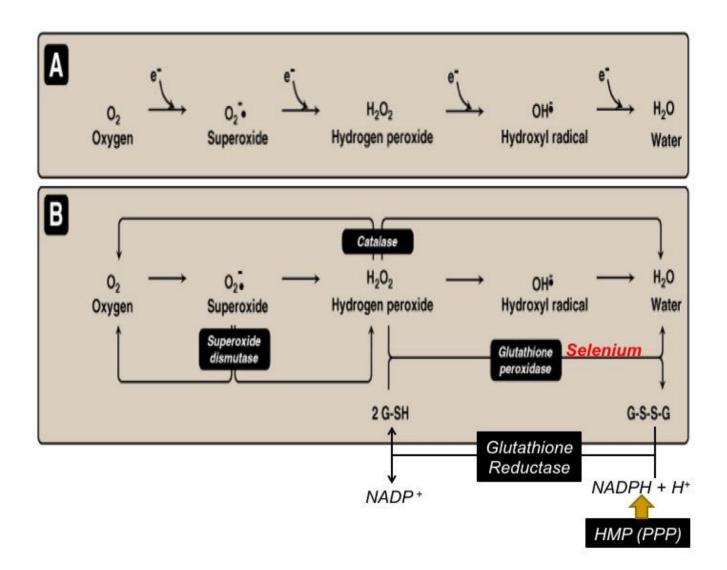
<u>Hemorrhagic stroke risk factors</u>

High blood pressure Smoking Illegal drug use (especially cocaine and "crystal meth") Use of warfarin or other blood thinning medicines The **cell death mechanisms** implicated in the pathogenesis of ischemic brain injury

Cell death mechanisms in cerebral ischemia: Necrosis and Apoptosis

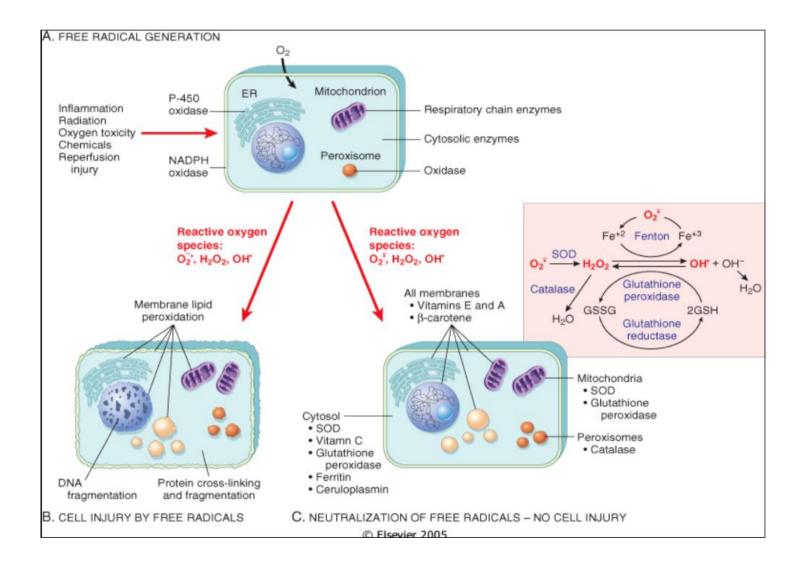
- Necrosis is commonly observed early after severe ischemic insults
- **Apoptosis** occurs with more **mild** insults and with **longer** survival periods
- The mechanism of cell death involves calcium-induced calpain-mediated proteolysis of brain tissue
- Substrates for calpain include:

Cytoskeletal proteins, Membrane proteins and Regulatory and signaling proteins


Biochemical Responses to Ischemic Brain Injury

Oxidative stress Metabolic stress Neurochemical response

Oxidative stress


The Role of Reactive Oxygen Species (ROS) & Reactive Nitrative Species (RNS) in Normal Brain Physiology

- They are mainly generated by microglia & astrocytes
- They modulate synaptic transmission & non-synaptic communication between neurons & glia
- During periods of increased neuronal activity, ROS & RNS diffuse to the myelin sheath of oligodendrocytes activating Protein kinase C (PKC) → posttranslational modification of myelin basic protein (MBP) by phosphorylation
- They regulate neuronal signaling in both central & peripheral nervous systems
- They are required for essential processes as learning & memory formation

Oxidative stress

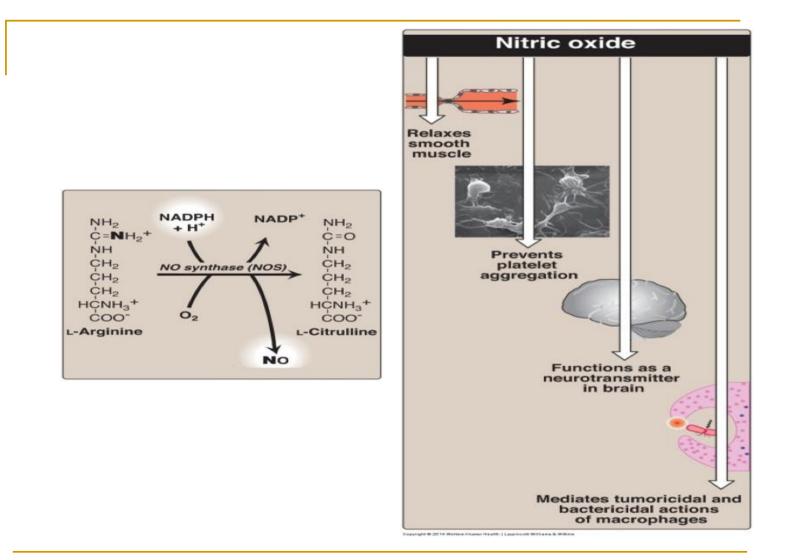
- A condition in which cells are subjected to excessive levels of Reactive oxidizing species (ROS or RNS) & they are unable to counterbalance their deleterious effects with antioxidants.
- It has been implicated in the ageing process & in many diseases (e.g., atherosclerosis, cancer, neurodegenerative diseases, stroke)

The brain and Oxidative stress

- The brain is highly susceptible to ROS-induced damage because of:
 - High concentrations of peroxidisable lipids
 - Low levels of protective antioxidants
 - High oxygen consumption
 - High levels of iron (acts as pro-oxidants under pathological conditions)
 - The occurrence of reactions involving dopamine & Glutamate oxidase in the brain

Molecular & Vascular effects of ROS in ischemic stroke

Molecular effects:


- **DNA** damage
- Lipid peroxidation of *unsaturated fatty acids*
- **Protein** denaturation
- □ Inactivation of **enzymes**
- Cell signaling effects (e.g., release of Ca²⁺ from intracellular stores)
- Cytoskeletal damage
- **Chemotaxis**

Vascular effects:

- Altered vascular tone and cerebral blood flow
- Increased platelet aggregability
- Increased endothelial cell permeability

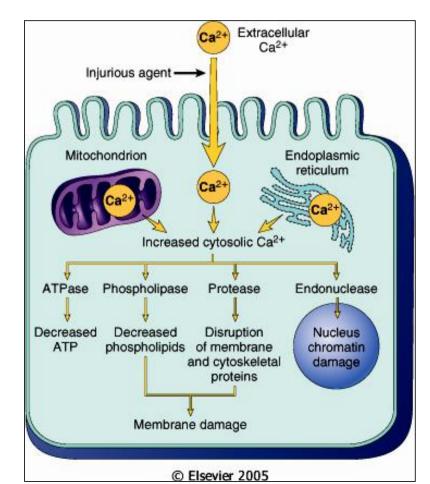
The role of NO in the pathophysiology of cerebral ischemia

- Ischemia \rightarrow abnormal NO production
- This may be both **beneficial** and **detrimental**, depending upon when and where NO is released
- NO produced by endothelial NOS (eNOS) → improving vascular dilation and perfusion (i.e. beneficial).
- In contrast, NO production by neuronal NOS (nNOS) or by the inducible form of NOS (iNOS) has detrimental (harmful) effects.
- Increased iNOS activity generally occurs in a delayed fashion after brain ischemia and trauma and is associated with inflammatory processes

Metabolic stress

Biochemical changes in The brain during ischemia

Ischemia \rightarrow interruption or severe reduction of blood flow, O₂ & nutrients in cerebral arteries \rightarrow energy depletion (depletion of ATP & creatine phosphate)


Inhibition of ATP-dependent ion pumps
Membranes depolarization
Perturbance of transmembrane ion gradients

↑ Lactic acid in neurons → acidosis → promotes the prooxidant effect → ↑ the rate of conversion of O_2^{-} to H_2O_2 or to hydroxyperoxyl radical

•Ca²⁺ Influx (translocation from extracellular to intracellular spaces) → activation of cellular proteases (Calpains) & lipases → breakdown of cerebral tissue
 •Na⁺ influx
 •K⁺ efflux

•K⁺-induced release of excitatory amino acids

Sources & consequences of increased cytosolic Calcium in cell injury

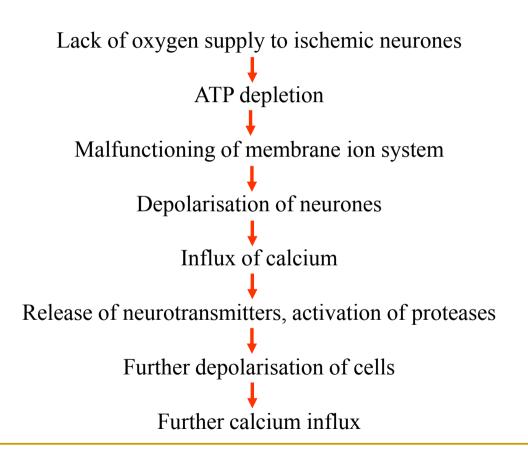
Neurochemical response

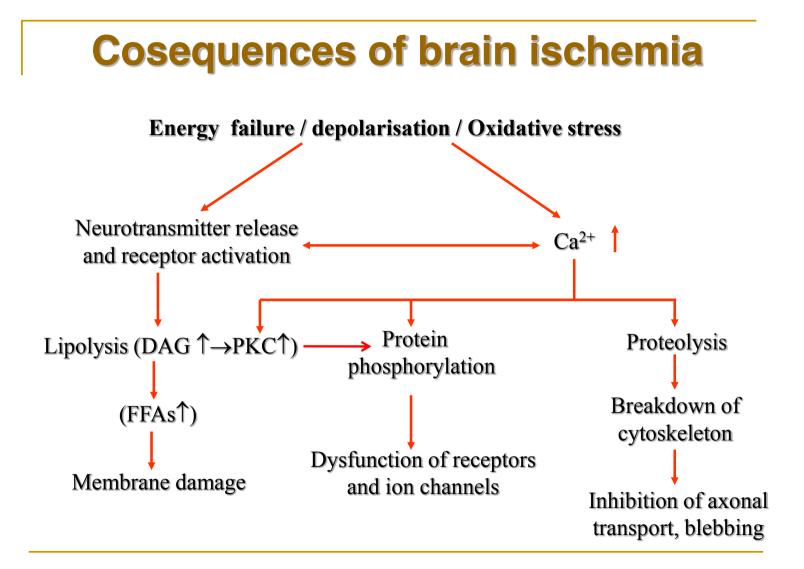
The neurochemical response to cerebral ischemia

- Following cerebral ischemia, extracellular levels of various neurotransmitters are increased e.g.,
 - Glutamate
 - Glycine
 - GABA
 - Dopamine

The Blood tests in patients with brain ischemia or hemorrhage

- Complete blood count, including hemoglobin, hematocrit, white blood cell count, and platelet count
- Prothrombin time, international normalized ratio (INR), and activated partial thromboplastin time
- Thrombin time and/or ecarin clotting time if patient is known or suspected to be taking a direct thrombin inhibitor or a direct factor Xa inhibitor
- Blood lipids, including total, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) cholesterol, and triglycerides.
- Cardiac enzymes and troponin


Biochemical basis of pharmacological intervention


Examples of Potential Biochemical Intervention in Cerebral Ischemia

- Inhibitors of glutamate release
- Ca²⁺ channel blockers
- Nitric oxide synthase inhibitors & free radical inhibition
- Calpain inhibitors

To Summarize:

Ischemic cascade

Take Home Message

Severe cerebral ischemic insults lead to a complex cascade of biochemical and molecular events, including:

- 1. Cell death
- 2. Oxidative stress
- 3. Metabolic stress and neurochemical changes

References

- Lippincott's Illustrated reviews: Biochemistry 6th edition, Unit 2, Chapter 13, Pages 145-156.
- Role of Oxidative Stress in Chronic Diseases (Book). (Link)
- The Role of Neurotransmitters in Brain Injury (Book, Page 36). (Link)
- <u>http://www.uptodate.com/contents/stroke-symptoms-and-diagnosis-beyond-the-basics</u>

- Bramlett and Dietrich, Pathophysiology of Cerebral Ischemia and Brain Trauma: Similarities and Differences, Journal of Cerebral Blood Flow and Metabolism, 2004, 24: 133-150
- Allen and Bayraktutan, Oxidative Stress and its Role in the Pathogenesis of Ischemic Stroke, World Stroke Organization International Journal of Stroke, 2009, 4:461–470