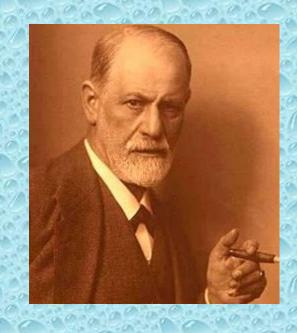


DR. ALIAH ALSHANWANI

MEDICAL PHARMACOLOGY OCTOBER 2018


DRUGS USED IN MANAGEMENT OF PAIN

A CASE OF OVERDOSE

Sigmund Freud, the father of psychoanalysis

His cancer of the jaw was causing him increasingly severe **PAIN** & agony

He begged his friend and doctor, Max Schur to relieve him.

His doctor administered increasing doses of **MORPHINE** that resulted in Freud's death on 23 September 1939

WHAT EFFECT OF MORPHINE CAUSED THE DEATH OF SIGMUND FREUD?

EUTHENASIA

DRUGS USED IN MANAGEMENT OF PAIN

ILOS

Categorize the different <u>classes</u> of drugs used to relieve pain

Detail on the mechanism of action, pharmacokinetics & pharmacodynamic effects of morphine & its synthetic derivatives

Hints on the properties & clinical uses of morphine antagonists.

DRUGS USED IN MANAGEMENT OF PAIN

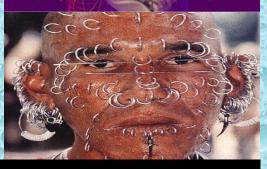
WHY SHOULD WE TREAT PAIN?

Pain is a miserable experience

Pain is the most common reason patient seek medical advice

Impairs the patient functional ability & psychological well being

Pain increases sympathetic output


- -Increases myocardial oxygen demand
- -Increases BP, HR

Pain limits mobility

-Increases risk for DVT/PE

PAIN

Is an unpleasant sensory and emotional experience associated with actual and potential tissue damage, or described in terms of such damage. (American Pain Society[APS],2003;Gordon,2002)

- "The fifth vital sign" American Pain Society 2003
- Identifying pain as the fifth vital sign suggests that the assessment of pain should be as automatic as taking a client's BP and pulse

WHAT IS PAIN?

CLASSES OF DRUGS USED IN MANAGEMENT OF PAIN

NSAIDs

Analgesia

Side-effects

Opioids

Adjuvant drugs

WHO Pain Ladder

Increasing Pain

2 Mode Opioid

3 Severe Pain
Opioid ± Nonopioid ± Adjuvant
Morphine, Hydromorphone...

2 Moderate Pain
Opioid ± Nonopioid ± Adjuvant
Codiene, Hydrocodone, Oxycodone...

Mild Pain
Nonopioid ± Adjuvant
Aspirin, Acetaminophen, NSAIDs...

NS&IDS

Generally the 1st class of drugs used for controlling pain

Work at site of tissue injury to prevent the formation of the nociceptive mediators

Can decrease opioid use by ~30% therefore decreasing opioid-related side effects

They neither cause tolerance or dependence

Has a ceiling effect to analgesia.

ADJUVANT DRUGS

e.g. Anxiolytics,
Neuroleptics,
Antidepressants
Antiepileptics

May modify the perception of pain & remove the concomitants of pain such as anxiety, fear, depression

OPIOIDS

Opium is derived from the juice of the opium poppy, *Papaver somniferum*

MONTH OF THE PROPERTY OF THE PARTY OF

The **natural** products include morphine, codeine, papaverine & thebaine

Opiates are drugs derived from opium & semisynthetic & synthetic derivatives

Endogenous opioid peptides, e.g. Endorphins, enkephalins & dynorphins.

OPIOID RECEPTORS

Anatomical distribution in brain, spinal cord, & the periphery

OPIOID RECEPTORS	1111992077
Opioid Receptor Class	Effects
Mu	Euphoria, supraspinal analgesia, confusion, dizziness, nau- sea, low addiction potential
Mu ₂	Respiratory depression, cardiovascular and gastrointestinal effects, miosis, urinary retention
Delta 8	Spinal analgesia, cardiovascular depression, decreased brain and myocardial oxygen demand
Kappa k	Spinal analgesia, dysphoria, psychomimetic effects, feed- back inhibition of endorphin system

ORL-1 receptor

Nociceptin ligand

All of them are typical G-protein coupled receptors

CLASSIFICATION OF OPOIDS

According to their source

Natural

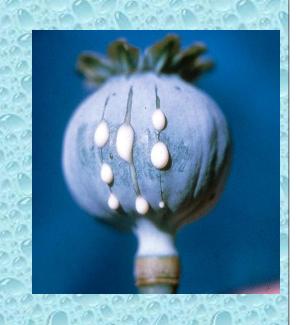
Morphine, Codeine

Semisynthetic

Heroin

Synthetic

Pethidine, Methadone


According to agonistic/antagonistic actions

Agonists; Morphine, Codeine,

Pethidine, Methadone

Mixed agonist / antagonist; Pentazocine

Pure antagonist; Nalaxone, Naltraxone

CLASSIFICATION OF OPOIDS

According to their specificity of action on receptors

Morphine, codeine, heroin $\rightarrow \mu$ -receptor agonists

Pentazocine agonist at k –receptors & antagonist at μ-receptors.

MECHANISM OF ACTION

Binding to presynaptic opioid


receptors coupled to Gi → ↓ AC &

cAMP → ↓ voltage-gated Ca²⁺

channels **+ +** excitatory transmitter.

Binding to postsynaptic receptors

- **♦** opening of K channels **▶**
- **♦** neuronal excitability.

PHARMACODYNAMIC ACTIONS OF MORPHINE

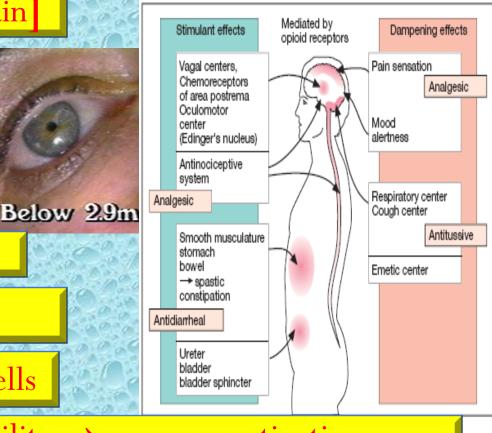
Analgesia [in acute & chronic pain]

Euphoria & sedation

Respiratory depression

Depression of cough reflexes

Nausea & vomiting $\rightarrow \uparrow$ CRTZ


Pin point pupil (miosis)

Releases histamine from mast cells

Effects on GIT:- \uparrow in tone \downarrow motility \rightarrow severe constipation.

Constriction of biliary sphincter → ↑pressure in the biliary tract & biliary colic.

Depress renal function & contract gall bladder.

TOLERANCE

TOLERANCE & DEPENDENCE

Tolerance occurs rapidly with opioids (with morphine 12–24 hours)

Tolerance develops to respiratory depression, analgesia, euphoria & sedation

DEPENDENCE

Physical dependence (abstinence) Withdrawal manifestations develops upon stoppage.

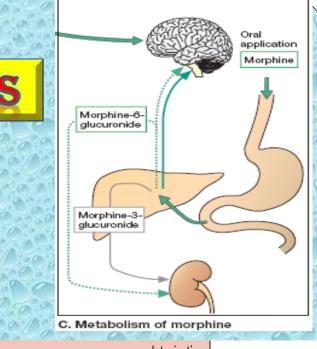
Lasting for a few days (8-10 days) in form of body ache, insomnia, diarrhea, gooseflesh, lacrimation

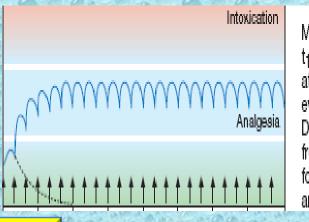
Psychological dependence lasting for months / years → craving

PHARMACOKINETICS

 $t^{1/2}$ is 2-3h

It is slowly & erratically absorbed orally (bioavailability 20-40%).


-Medically given by SC, IM or IV injection.


Metabolized by conjugation with glucuronic acid

Undergoes enterohepatic recycling,

-crosses BBB

-crosses placenta.

Morphine
t_{1/2} = 2 h
at low dose
every 4 h
Disadvantage:
frequent dosing
for sustained
analgesia

CLINICAL INDICATIONS

CONTROL PAIN; cancer pain, severe

burns, trauma, Severe visceral pain (not

renal/biliary colics, acute pancreatitis)

Acute pulmonary edema

Myocardial ischemia

Non painful conditions e.g. heart failure

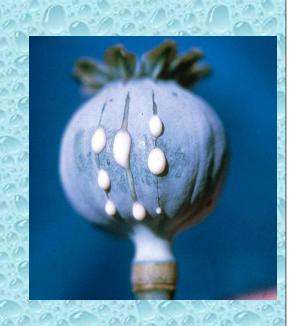
(to relieve distress)

Pre-anesthetic medication.

ADRS

CONSTIPATION

RESPIRATORY DEPRESSION


CVS: HYPOTENSION (DECREASE SYSTOLE & DIASTOLE BP) ON LONG TERM USE

NAUSEIA, VOMITING

CONSTRICTED PUPIL

SEDATION.

CONTRAINDICATIONS

HEAD INJURY

BRONCHIAL ASTHMA or impaired pulmonary function

Biliary colic & pancreatic pain

The state of the s

Elderly are more sensitive; \(\psi\) metabolism, lean body mass & renal function

With MAOIs

Not given infants, neonates or during child birth conjugating capacity accumulate tespiratory

CODEINE

Natural opioid, µ agonist

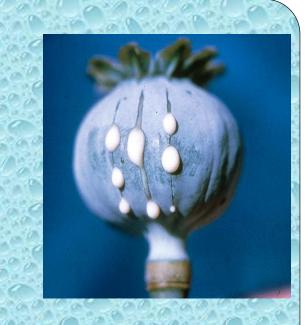
Dependence < morphine

Used in mild & moderate pain, cough, diarrhea.

TRAMADOL

Synthetic, μ agonist, less potent than morphine

Inhibits also NE & 5HT reuptake


Can be given orally; more oral bioavailability

Indications

- -Mild moderate acute & chronic visceral pain
- -During labor

ADRS

- -Seizures (not in epileptics), Nausea, Dry mouth, Dizziness, Sedation
- -Less adverse effects on respiratory & C.V.S.

PETHIDINE (MEPRIDINE)

Synthetic, more effective **κ** agonist

ACTIONS

LESS analgesic, constipating, depressant on faetal respiration than morphine

No cough suppressant effect

Has atropine –like action (Smooth muscle relaxant)

PETHIDINE (MEPRIDINE)

ADRS

Tremors, Convulsions, Hyperthermia, Hypotension

Blurred vision, Dry mouth, Urine retention

Tolerance & Addiction

INDICATIONS

As in morphine but not in cough & diarrhea

Preanaesthetic medication (better)

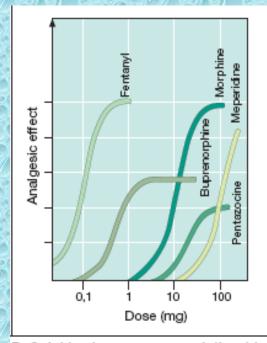
Used in severe visceral pain; renal & biliary colics (sm. relaxant

FENTANYL

Synthetic, µ agonist, more potent than pethidine & morphine

Analgesic supplement during anesthesia, (IV or intrathecal)

To induce & maintain anesthesia in poor-risk patients [stabilizing heart]

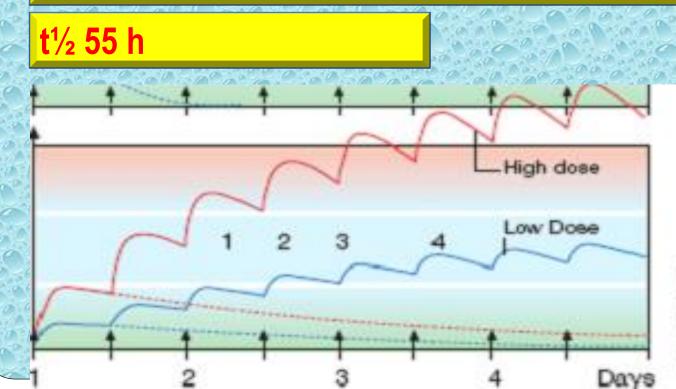

In combination with droperidol as NEUROLEPTANALGESIA

In cancer pain & severe postoperative pain; (transdermal patch changed every 72 hrs).

This is strong stuff.

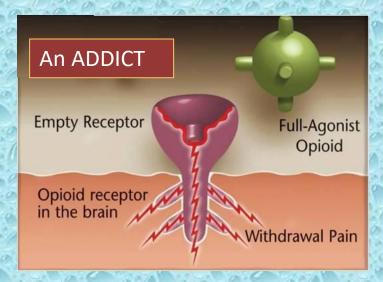
B. Opioids: dose-response relationship

FENTANYL

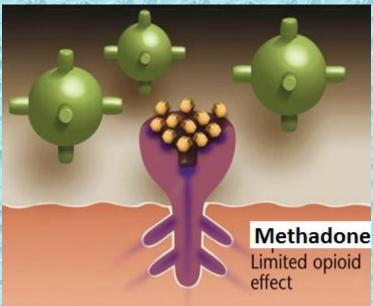

ADRS

Respiratory depression (most serious)
CV effects are less
Bradycardia may still occur.

METHADONE

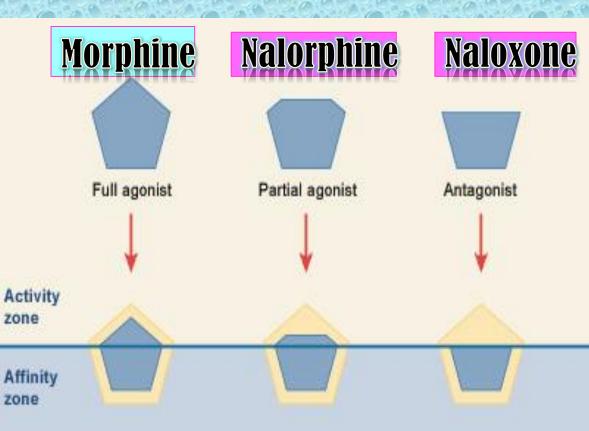

Weaker synthetic μ- agonist

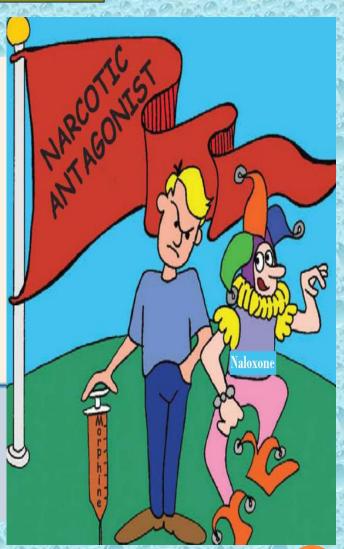

In non addicts, it causes tolerance & dependence but not as severe as that of morphine



Methadone t_{1/2} = 55 h Disadvantage: dose difficult to titrate

Used to treat opioid withdrawal





OPIOID ANTAGONISTS

NALOXONE

Pure opioid antagonist

Used to treat respiratory depression caused by opioid overdose

To reverse the effect of analgesia on the respiration of the new born baby

Effect lasts only for 2-4 hours

Precipitates withdrawal syndrome in addicts

NALTREXONE

Very similar to naloxone but with longer duration of action $[t^{1/2}=10h]$.