Brain Neurotransmitters

- chemical substances released by electrical impulses into the synaptic cleft from synaptic vesicles of presynaptic membrane
- * Diffuses to the postsynaptic membrane
- * Binds to and activates the receptors
- * Leading to initiation of new electrical signals or inhibition of the post-synaptic neuron

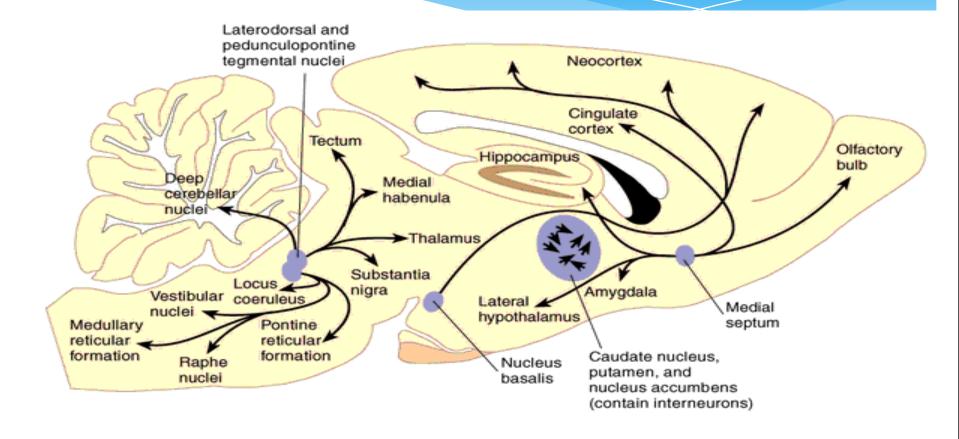
Classification of Neurotransmitters

Acetylcholine (ACh) | Dopamine (DA) | Norepinephrine (NE)

Epinephrine

Amino Acids							
Gamma-aminobutyric acid (GABA) Glycine Glutamate							
Aspartate							

Histamine


Serotonin (5-HT)

Neuroactive Peptides - partial list!!					
bradykinin	beta-endorphin	bombesin	calcitonin		
cholecystokinin	enkephalin	dynorphin			
gastrin	substance P	neurotensin	glucagon		
secretin	somatostatin	motilin	vasopressin		
oxytocin prolactin		thyrotropin	angiotensin II		
sleep peptides galanin		neuropeptide Y	thyrotropin-releasing hormone		
gonadotropnin-releasing hormone	growth hormone-releasing hormone	luteinizing hormone	vasoactive intestinal peptide		

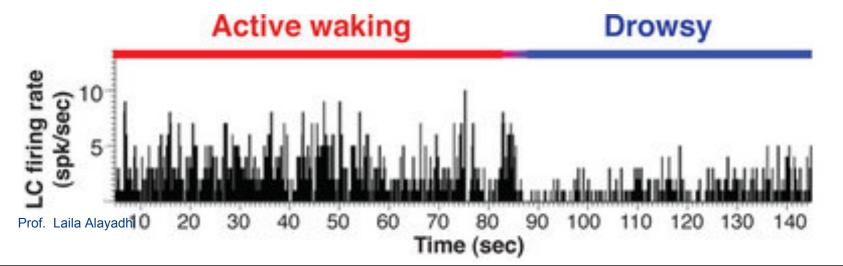
Soluble Gases
Nitric Oxide (NO) Carbon Monoxide

- 1- Adrenaline / NE
- 2- Ach
- 3- Glutamate
- 4- GABA
- 5- Serotonin
- 6- Dopamine

1 - Norepinephrine System

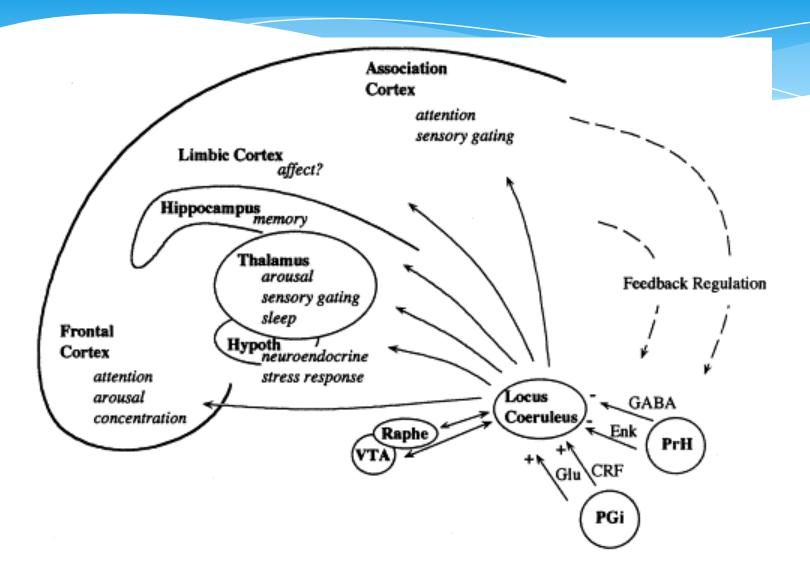
Nucleus Coeruleus in the pons, involved in physiological responses to stress and panic

The Locus Coeruleus/Norepinephrine System


- Very wide-spread projection system
- LC is activated by stress and co-ordinates responses via projections to thalamus, cortex, hippocampus, amygdala, hypothalamus, autonomic brainstem centers, and the spinal cord
- Sleep
- Attention/Vigilance

Locus coeruleus neurons fire as a function of vigilance and arousal

Irregular firing during quiet wakefulness Sustained activation during stress

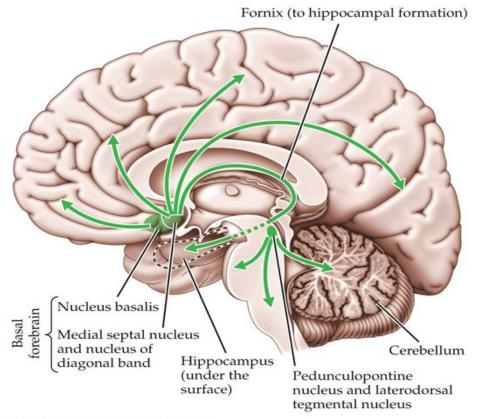

Their firing decreases markedly during slow-wave sleep

and virtually disappears during REM sleep.

Norepinephrine (NE) Implicated in Stress-Related Disorders

- · Reduced level in:
- Depression
- Withdrawal from some drugs of abuse (NE imbalance + other NT)
- · High level in anxiety panic disorder

PGi: Nucleus paragigantocellularis


PrH: Perirhinal Cortex

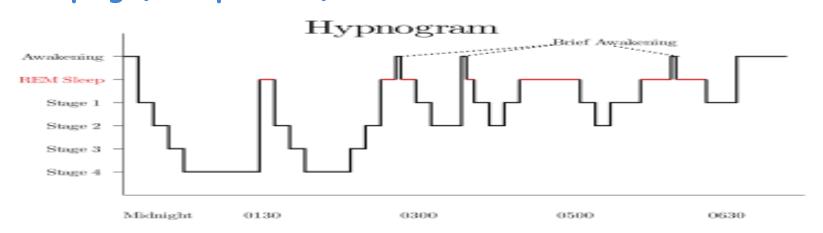
SEROTONIN NOREPINEPHRINE IMPULSE ANXIETY IRRITABLITY ENERGY MEMORY **ALERTNESS** OBSESSION CONCENTRATION COMPULSION MOOD COGNITION SEX APPETITE AGGRESSION ATTENTION PLEASURE REWARD MOTIVATION DRIVE DOPAMINE

2- Acetylcholine

Cholinergic Pathways in the Brain

Cholinergic nerve cell bodies and projections contain ACh.

BIOLOGICAL PSYCHOLOGY 7e, Figure 4.3

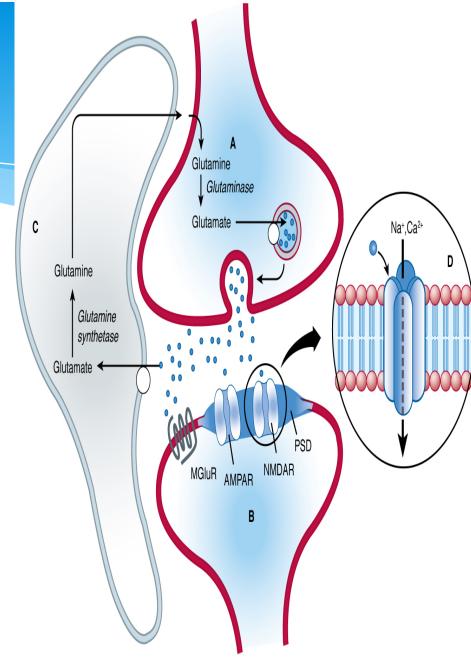

© 2013 Sinauer Associates, Inc.

* Major neurotransmitter in the peripheral nervous system

- * Associated with:
- * Thought
- * Memory
- * Muscular coordination
- * Speed of information processing in the brain
- * Production of myelin sheath

* ACh influences mental processes

- * High levels during:
 - * Learning
 - * Memory
 - * REM (rapid eye movement sleep)
- * Low levels during:
- * Sleeping (Except REM)

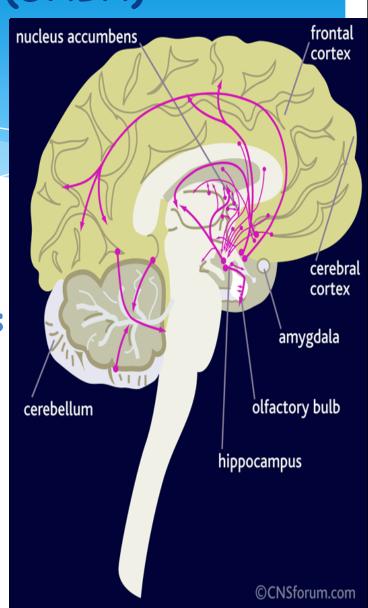


- * Alzheimer's Disease:
- * Most common form of dementia
- * Associated with acetylcholine Damage
- * (Ach producing cells in the basal forebrain)
- * Disturbed levels in :
- * Bipolar disorder
- * Mood swings
- * Depression
- * Mental attension

3- Glutamate

It is the most commonly found neurotransmitter in the brain

- * It is always excitatory
- * Important factor in neuronal cell degeneration:
- * Motor neuron disease
- * Huntington's disease
- * Parkinson's disease
- * Alzheimer's disease

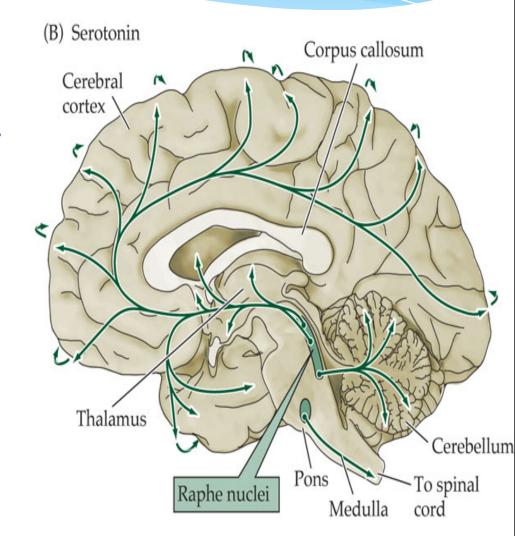

- * Important role in
- * Learning and memory

Reduced level in:

- * Stroke
- * Autism
- * Intellectual disability
- * Alzheimer's disease

4-Gamma Aminobutyric acid (GABA)

- * Inhibitory neurotransmitter of CNS
- * (found in retina)
- * Formed by decarboxylation of glutamate.
- * Three types of GABA receptors e.g. GABA_{A B & C.}
- * GABA A & B receptors are widely distributed in CNS.
- * $GABA_C$ are found in retina only
- * GABA B are metabotropic (G-protein) in function.

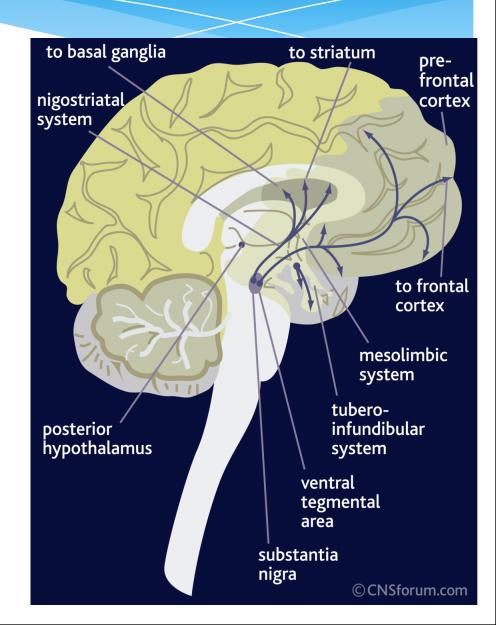

- * GABA is the main inhibitory neurotransmitter in the central nervous system (CNS).
- * GABAergic inhibition is seen at all levels of the CNC:
 - Hypothalamus, hippocampus, cerebral cortex and cerebellar cortex
- * GABA interneurones are abundant in the brain, with 50% of the inhibitory synapses in the brain being GABA mediated.

5- Serotonin

The serotonin pathways in the brain:

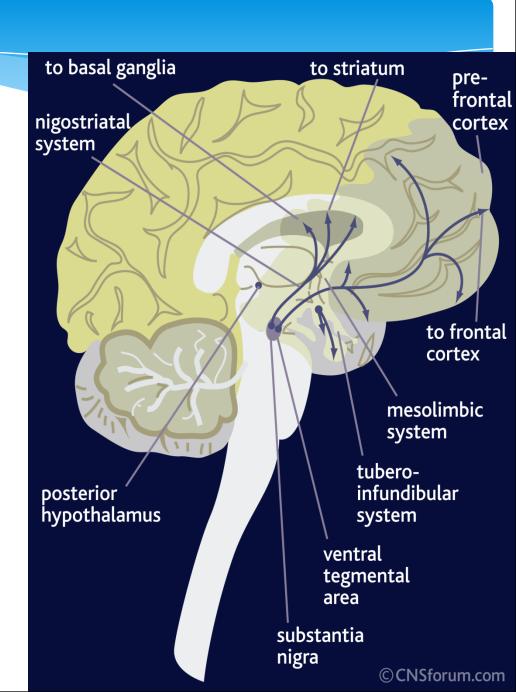
The principal centers for serotonergic neurons are the rostral and caudal raphe nuclei

>>>> axons ascend to the cerebral cortex, limbic & basal ganglia
Serotonergic nuclei in the brain stem >>>> descending axons (terminate in the medulla& spinal cord


Serotonin (5-HT) Disorders

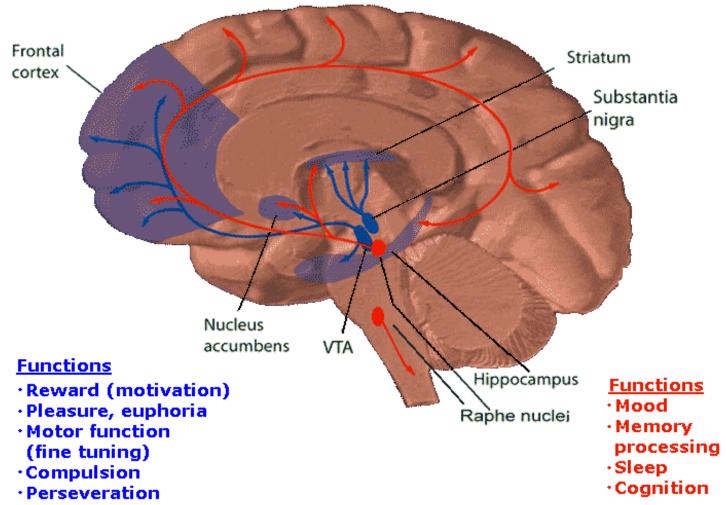
- · Low level in Depression
- Anxiety

6-Dopaminergic Pathways


Dopamine is transmitted via three major pathways:

1- The first extends from the substantia nigra to the caudate nucleus-putamen (neostriatum) and is concerned with sensory stimuli and movement.

- * 2- The second pathway prject to the mesolimbic forebrain
- * Related to cognitive, reward and emotional behavior
- * 3- The third pathway, known as the tubero-infundibular system
- * Rleated to neuronal control of the hypothalmic-pituatory endocrine system.


Prof. Laila Alayadhi

Dopaminergic Pathways/Functions

Dopamine Pathways

Serotonin Pathways

Dopaminergic neurons disorders

Schezophrenia.

Parkinson's Disease.

Neurotransmitter	Postsynapti c effect	Derived from	Site of synthesis	Postsynaptic receptor	Fate	Functions
1. Acetyl choline (Ach)	Excitatory	Acetyl co- A + Choline	Cholinergic nerve endings Cholinergic pathways of brainstem	1. Nicotinic 2. Muscarini c	Broken by acetyl cholinesterase	Cognitive functions e.g. memory Peripheral action e.g. cardiovascular system
2. Catecholamines i. Epinephrine (adrenaline)	Excitatory in some but inhibitory in other	Tyrosine produced in liver from phenylalanin e	Adrenal medulla and some CNS cells	Excites both alpha a & beta B receptors	1.Catabolized to inactive product through COMT & MAO in liver 2.Reuptake into adrenergic nerve endings 3.Diffusion away from nerve endings to body fluid	For details refer ANS. e.g. fight or flight, on heart, BP, gastrointestinal
ii.Norepinephrine	Excitatory	Tyrosine, found in pons. Reticular formation, locus coerules, thalamus, mid-brain	Begins inside axoplasm of adrenergic nerve ending is completed inside the secretary vesicles	α ₁ α ₂ β ₁ β ₂		activity etc. Norepinehrine controls attention & arousal, sleep/wake cycle.
iii. Dopamine Prof. Laila Alayadhi	Excitatory	Tyrosine	CNS, concentrated in basal ganglia and dopamine pathways e.g. nigrostriatal,	D ₁ to D ₅ receptor	Same as above	Sensory motor Cognetive/emotion al behavior Endocrine Hypothalamic
			mesocorticolim			Decreased

Neurotransmitt er Postsynaptic effect Derived from effect Derived from synthesis Postsynaptic receptor Postsynapti							
(chromaffin cells) Platelets & receptor mediate platelet aggregation & smooth muscle contraction 4. Histamine Excitatory Histidine Hypothalamu s Hypothalamu s Hypothalamu s Hypothalamu s Hypothalamu s Hypothalamu s Horain Hypothalamu s Horain Hypothalamu s Hypothalamu s Histidine Hypothalamu s Hypothalamu s Horain Horain Hypothalamu s Hypothalamu s Horain Hypothalamu s Hypothalamu s Horain Hypothalamu s Hypothalamu s Hypothalamu s Horain Hypothalamu s Hypothalamu s Hypothalamu s Horain Hypothalamu s Hypothalamu s Horain Hypothalamu s Hypothalamu s Horain		•	Derived from			Fate	Functions
s H ₁ H ₂ H ₃ receptors found in peripheral tissues & the brain Excitatory 75% of excitatory transmissio n in the brain brain Excitatory transmissio n in the brain telephoral tissues & the brain Excitatory transmissio in threshold, blood pressure, blood flow control, gut secretion, allergic reaction (involved in metabotropic receptors. Three types of ionotropic receptors e.g. NMDA, AMPA NMDA, AMPA NMDA, AMPA Three types of ionotropic and metabotropic receptors e.g. NMDA, AMPA NMDA, AMPA NMDA, AMPA Three types of ionotropic and metabotropic receptors. EXCITATION TO THE SHOW	-	Excitatory	Tryptophan	(chromaffin cells) Platelets &	5-HT ₇ 5-HT ₂ A receptor mediate platelet aggregation & smooth muscle	MAO to form 5- hydroxyindoleace tic acid(5-HIAA) in pineal body it is converted to	sleep, pain feeling, temperature, BP, & hormonal
75% of excitatory transmissio n in the brain the brain	4. Histamine	Excitatory	Histidine		H ₁ , H ₂ , H ₃ receptors found in peripheral tissues & the	oxidase (histaminase)	threshold, blood pressure, blood flow control, gut secretion, allergic reaction (involved in
Prof. Laila Alayadhi receptors.		75% of excitatory transmission in the brain	amination of Kreb's cycle intermediate a –	spinal cord e.g.	metabotropic receptors. Three types of ionotropic receptors e.g. NMDA, AMPA and kainate	from the brain ECF by Na ⁺ dependent uptake system in neurons and	potentiation involved in memory and learning by causing Ca ⁺⁺

Neurotransmitt er	Postsynaptic effect	Derived from	Site of synthesis	Postsynaptic receptor	Fate	Functions
6. Aspartate	Excitatory	Acidic amines	Spinal cord	Spinal cord	Aspartate & Glycine form an excitatory / inhibitory pair in the ventral spinal cord	
7. Gama amino butyric acid(GABA)	Major inhibitory mediator	Decarboxylati on of glutamate by glutamate decarboxylas e (GAD) by GABAergic neuron.	CNS	GABA - A increases the Cl - conductance, GABA - B is metabotropic works with G - protein GABA transaminase catalyzes. GABA - C found exclusively in the retina.	Metabolized by transamination to succinate in the citric acid cycle.	GABA - A causes hyperpolarization (inhibition) Anxiolytic drugs like benzodiazepine cause increase in CI- entry into the cell & cause soothing effects. GABA - B cause increase conductance of K+ into the cell.
8. Glycine Prof. Laila Alayadhi	Inhibitory	Is simple amino acid having amino group and a carboxyl group attached to a carbon atom	Spinal cord	Glycine receptor makes postsynaptic membrane more permeable to Cl- ion.	Deactivated in the synapse by simple process of reabsorbtion by active transport back into the presynaptic membrane	Glycine is inhibitory transmitted found in the ventral spinal cord. It is inhibitory transmitter to Renshaw cells.

