

Physiology of

Dr. Hayam Gad Associate Professor of Physiology College of Medicine, K S U

Learning Objectives

1- What is pain and its significance

2-Pain receptors
 & mechanism of stimulation

3- Qualities & Types of pain

6- Role of thalamus and cerebral cortex in pain perception

5- Pathway of pain

4- Referred pain

	•	Sensory receptors	Specialized peripheral endings of primary afferent neurons
		Nociceptors (pain receptors)	Primary afferent receptors that respond selectively to noxious stimuli
		Noxious stimulus	Stimulus (mechanical, chemical or thermal) that produces tissue damage or threatens to do so (≠ innocuous).
		Polymodal nociceptors	Respond to various noxious stimuli.

Significance of Pain: Why do we feel pain?

- It is a protective mechanism meant to make us aware that tissue damage is occurring or is about to occur:-
 - Avoid noxious stimuli
 - Remove body parts from danger
 - Promote healing by preventing further damage

- Storage of painful experiences in memory to avoid potentially harmful event in the future
- The sensation of pain may be accompanied by behavioral responses (withdrawal, defense) as well as emotional responses (crying, anxiety or fear).
 Pain is perceived at both the cortical & thalamic levels.

Pain Reception and Perception

 Response of nerve receptors in the skin and tissues to stimuli resulting from actual or potential tissue damage

Perception الإدراك The process by which pain is recognized and interpreted by the brain

Pain & Nociception

Pain Receptors 'Nociceptors'?

"Are special receptors that respond only to noxious stimuli and generate nerve impulses which the brain interprets as "pain". (Sherrington 1906)

Sir Charles Scott Sherrington

What are the Characteristics of Nociceptors?

- They are the most widely distributed.
- They are specific (have adequate stimulus), pain is not produced by overstimulation of other receptors.
- They are high threshold receptors i.e. painful stimuli must be strong & noxious to produce tissue damage.
- They do not adapt (or very little) to repetitive stimulation Why? It allows the pain to keep the person apprised of a tissue-damaging stimulus as long as it persists.

Distribution of Pain Receptor(Nociceptors)

 All pain receptors are free nerve endings of : 1-Unmyelinated C fibers (diameter 0.4 – 1.2 μm with conduction velocity 0.5 - 2 m/s 2- Small diameter myelinated Aδ fibers (diameter fine 2 - 5 μm with conduction velocity 12 - 30 m/sec.

Type-A & Type-C Fibers

Classification of Nerve fibres

Diameter (μm) 10-20
Conduction5-102-50.5-2Velocity (m/s) 70-12030-705-300.5-2

Mechanism of Stimulation of Nociceptors

Pain receptors are depolarized either directly or through the production of pain producing substances (<u>inflammatory</u> <u>mediators</u>) from damaged tissues

e.g. bradykinin, histamine, substance P, calcitonin generelated peptide (CGRP), interleukins, prostaglandins, K⁺, Ach, proteolytic enzymes.

PGs & substance – P enhance the sensitivity of pain receptors.

Chemical Substances Released During Tissue Damage

Substance	Source
Potassium	Damaged cells
Serotonin	Platelets
Bradykinin	Plasma
Histamine	Mast cells
Prostaglandins	Damaged cells
Leukotrienes	Damaged cells
Substance P	Primary nerve afferents

Pain Mechanism

Some chemicals released by tissue damage that stimulates nociceptors. In addition release of substance-P, along with histamine, produce vasodilation and swelling.

Pain Mechanism

Damage and inflammation release chemical mediators as cytokines, bradykinin, prostaglandin, Substance P

Activate or sensitize the receptor endings

Transduction and conduction of nerve impulse

Classification of Pain

/

Nociceptive & Neuropathic Pain

Differences Between Nociception & Neuropathic Pain

Nociception	Neuropathic pain
Sustained primarily by the	Sustained by aberrant processes in PNC
nociceptive system	or CNS
Proportionate to the stimulation	Disproportionate to the stimulation of
of the nociceptors when acute	the nociceptors
Serve as a protective function,	Serve no protective function
normal pain when acute	
Pathological when chronic	Pathological pain
Respond to common analgesics	Resistant to common analgesics
E.g: acute burn, bone fracture	E.g: painful diabetic & peripheral
and other similar somatic &	neuropathies, sympathetic-mediated
visceral pain	pain, nerve inflammation, compression

Qualities of Pain

(Phenomenon of double-pain) Fast/immediate (1st) pain vs slow/delayed (2nd) pain

Fast (immediate) pain	Slow (second) pain
Sharp, intense, pricking, well localized	Burning, aching, throbbing "unbearable"
Felt within 0.1 sec upon stimulation of	diffuse, dull, or chronic pain, poorly localized
Mechanical & Thermal nociceptors	Felt after 1 sec or more upon stimulation of
Associated with reflex withdrawal	Polymodal receptors
Usually somatic not visceral	Associated with destruction of tissue
Transmitted by Aδ- fibers in the	Can occur in skin or any internal organ/tissue
peripheral nerves & centrally by	transmitted by C fibers peripherally &
Neospinothalamic Tract	centrally by paleospinothalamic Tract
Terminate at I and V laminas	Terminate at II and III laminas
Neurotransmitter – glutamate	Neurotransmitter – Substance-P
20% pain conduction	80% of pain conduction

Transmission of both "fast-sharp" and "slow-chronic" pain signal into and through the spinal cord on their way to the brain.

/

Types of Pain

Pain can be classified according to the site of stimulation into:-

/

Superficial Pain

Arises from skin or other superficial structures

Occurs in 2 phase (fast pricking, slow burning pain)

Can be well localized Associated with motor, autonomic, emotional reactions

Characteristics

Deep Pain

Arises from muscles, joints, periosteum, tendons & ligaments

Diffuse, slow prolonged conducted by type C fibers May be referred, initiate reflex contraction of nearby muscles, Caused by: trauma, bone fracture, inflammation, arthritis, muscle spasm & ischemia

Characteristics

Visceral Pain

 There are few pain receptors in most viscera
 Some viscera are pain insensitive e.g. liver parenchyma, lung alveoli, brain tissue, visceral layer of peritoneum, pleura and pericardium.

Visceral Pain....Cont.

Slow, diffuse, poorly localized, conducted by C fibers

Pain arising from parietal peritoneum, pleura & pericardium is sharp, pricking type Often referred associated with rigidity of nearby muscles and autonomic reactions Caused by: distension, inflammation or ischemia

Characteristics

Causes of Visceral Pain

N.B: Cutting, crushing are not painful when applied to viscera

Referred Pain

- This is pain that is felt away from its original site.
- It is most frequent with visceral pain & deep somatic pain but cutaneous pain is not referred.
- Pain is referred according to dermatomal rule i.e. the person generally localizes pain in the dermatomal segment from which the visceral organ originated in the embryo, not necessarily where the visceral organ now lies.
- When pain is both localized and referred it is called radiating pain

Examples of Referred Pain

Referred Pain Regions

Organ	Site of referred pain
Meninges	Back of head & neck
Heart	Central chest, left arm
Diaphragm	Shoulder tip
Esophagus	Behind sternum
Stomach, duodenum	Epigastrium
Small bowel, pancreas	Around umbilicus
Large bowel, bladder	Lower abdomen
Kidney	Loin
Ureter	Testicles
Trigon of bladder	Tip of penis
Hip	Knee
Appendix	Umbilicus
Uterus	Low back

Mechanism of Referred Pain

Convergence theory

- Afferent pain fibers from skin area & diseased viscera that develop from same embryonic segment converge on same 2nd order neuron and finally stimulate the same cortical neuron.
- The brain interprets the information coming from visceral nociceptors as having arisen from cutaneous nociceptors, because this is where nociceptive stimuli originate more frequently

Facilitation theory

- Pain fibers from skin are always carrying impulses, not enough to produce pain.
- Impulses from diseased viscus pass through afferents which give collaterals to ST neurons receiving pain fibers from skin.
- As a result, ST neurons' excitability is raised (they are facilitated) to reach a threshold level.
- The signals reaching the brain are projected to skin area and pain is felt in skin dermatome

Pathway of Pain

Pain sensation is carried by **lateral** spinothalamic tracts which includes

2 separate pathways:-

A) The neospinothalamic pathway: This transmits fast pain.

○ First order neurons

Are mainly $A\delta$ afferent nerves. They terminate at lamina I & V of dorsal horn.

Second order neurons

These constitute the tract. They start at dorsal horn, cross to opposite side and ascend in lateral column of spinal cord. The fibers ascend in brain stem to terminate in ventrobasal complex of thalamus.

O Third order neurons

These start at thalamus & most fibers project to somatosensory cortex.

B) The paleospinothalamic pathway:

This transmit slow pain sensation.

○ *First order neurons*

They are mainly **type C fibers**. They enter spinal cord via dorsal roots, terminate at substantia gelatinosa in laminae II & III of dorsal horn(substantia gelatinosa).

• Second order neurons

They start at SGR, cross to opposite side in front of central canal, ascend in lateral column of SC & terminate at:-

•*Reticular formation of brain stem.*

•Intralaminar nuclei of thalamus.

•*Hypothalamus & adjacent region of basal brain.*

Impulses arriving these regions have strong arousal effects and can be perceived.

○ *Third order neurons*

• These start at thalamus,

• Few fibers project to cerebral cortex.

Role of Cerebral Cortex in

- Full perception of pain occurs when signals enter RF of brain stem, thalamus & basal regions.
- Somatosensory cortex plays important role in topognosis i.e. localization & interpretation of pain quality.
- Fast pain is localized better than slow pain because signals carried in neospinothalamic tract reach somatosensory cortex, while a small propotion of paleospinothalamic pathway reach there.

Thank You!

Legot)

T