

Summary

Vitamin B6 & B12

-What is the component of B-Complex?

-Thiamine B₁ -Riboflavin B₂ -Niacin B₃ -Pantothenic acid B₅ 6-Biotin B₇ 7-Cobalamin B₁₂ -Folate B₉ -Pyridoxine B₆

-How vitamin B₆ forms be active?

Converted to pyridoxal phosphate (PLP)

-What is the mechanism of Condensation Reaction that vitamin B₆ required in? Glycine and succinyl CoA condense in the presence of ALA synthase (Vitamin B, is the coenzyme) to form ALA.

-What is the mechanism of Decarboxylation Reaction that vitamin B₆ required in?

1-decarboxylation of Tyrosine to dopamine (then dopamine converted to epinephrine and norepinephrine).

2-decarboxylation of histidine to histamine.

3-decarboxylation of tryptophan to serotonin.

-What is the mechanism of Transamination Reaction that vitamin B_{k} required in? Conversion of alanine to pyruvate via ALT and PLP

-How Isoniazid treatment for tuberculosis can lead to vit B₆ deficiency? by forming inactive derivative with PLP.

-How vitamin B₆ deficiency leads to demyelination of nerves and consequent peripheral neuritis? PLP is involved in the synthesis of sphingolipids

-How vitamin B_{12} absorbed by/storaged in the body? salivary glands secrete R protein which bind to vitamin B_{12} in stomach and will be removed in the intestine by pancreatic enzymes > the free B_{12} binds to the intrinsic factor which is released from the parietal cells of the stomach > intrinsic factor complex bind to their special receptors present on the intestinal epithelial cells and taken inside the enterocytes > thrown into the general circulation, bound to trans-cobalamin > goes to the liver to be stored. (whole explanation if the pic comes)

Short answer: it is absorbed by intrinsic factor (released from parietal cells) and stored in the liver (4-5mg)

-What is the mechanism of Reaction that vitamin B₁₂ required in? 1-Conversion of homocysteine to methionine by methionine synthase (requires Methylcobalamin) (take methyl group N⁵-methyltetrahydrofolate which gets converted to tetrahydrofolate) 2- Conversion of propionyl-CoA to succinyl-CoA by methylmalonyl-CoA mutase (requires deoxyadenosylcobalamin)

-What is the mechanism of folate trapping?

(Accumulation of N⁵-methyltetrahydrofolate due to dysfunction of methionine synthase) Homocysteine re-methylation reaction is the only pathway where N⁵-methyl TH4 can be returned back to the pool. Thus, in B12 deficiency, folate is trapped as N⁵-methyl TH4 \rightarrow folate deficiency + deficiency of other derivatives (N⁵-N¹⁰ methylene TH4 + N¹⁰ formyl TH4) required for purine/pyrimidine synthesis.

-How vitamin B₁₂ deficiency cause neuropathy?

Deficiency of vitamin B12 leads to accumulation of methylmalonyl CoA which will be used instead malonyl CoA for fatty acid synthesis (unstable)

-What causes vitamin B12 Deficiency secondary to IF deficiency?

Intrinsic factor deficiency due to autoimmunity or by partial or total gastrectomy

Vitamin A & VISUAL CYCLE 👁 👁

- Enumerate the fat soluble vitamins.
 A K E D
- Enumerate vitamin A compounds and their sources.
 Vitamin A from animal sources (called Retinoids) found in three forms 1- Retinol 2- Retinal 3-Retinoic acid
 vitamin A from plant sources 1- carotenoids (beta carotene) 2-cryptoxanthin

Enumerate vitamin A compounds from animal sources and their roles.
 1- retinol (alcohol form)
 2- retinal (or retinaldehyde form) essential in vision
 3- retinoic acid (acid form) essential for skin and bone growth

- List vitamin A functions.
 1- vision
 4- embryonic development and reproduction
- 2- skin health & antioxidant activity
- 5- immune function
- 3- bone metabolism

• Explain the role of vitamin A in vision. In Retina Vitamin A in the form of Retinal binds to protein call

In Retina Vitamin A in the form of Retinal binds to protein called opsin to make rhodopsin (in rods) and iodopsin (in cones) Once its stimulated by light Vitamin A isomerizes from bent "cis" form to straighten " trans" form and detaches from opsin The opsin change shape and send signal to the brain via optic nerve and the image is formed. Most retinal released is converted to " trans " retinol then to "cis" retinal to begin a new cycle .

- Explain the role of vitamin A in other tissues. retinol oxidized into retinoic acid(steroid hormone) which bind to nuclear receptors and cause gene activation lead to activation of mRNA and that lead to cellular differentiation
- Define the adaptation time and mention what does increase it? Its the time required to synthesis rhodopsin in the dark And its increased due to vitamin A deficiency
- What is the storage form of Vitamin A? Retinyl ester
- What are the diseases caused by vitamin A deficiency?

Nyctalopia (night blindness) Patient cannot see in low light or near darkness conditions	Xerophthalmia Dryness of the conjunctiva and cornea	Bitot's spots Localized increased thickness of the conjunctiva	Keratomalacia Prolonged xerophthalmia leads to drying and clouding of cornea	Complete blindness In severe deficiency
One of the earlier signs of vitamin A deficiency	EyeRoundstot	EyeRounds.org	EycRounds time	EAT

6-gene transcription

3

THECARROT

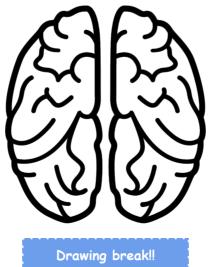
Alzheimer disease

• Mention 3 major microscopic findings of Alzheimer's disease.

Neuritic Plaques
 Neurofibrillary Tangles
 Amyloid Angiopathy

• Compare between:

Neuritic Plaques	Neurofibrillary Tangles	Amyloid Angiopathy
 Extracellular Spherical with 20-200 μm in diameter Contain: partial helical filament, synaptic vesicles, abnormal mitochondria Dominant component: Aβ40 & Aβ42 Less abundant proteins: complement protein, cytokines, a1-Antichymotrypsin, Apolipoproteins 	 Cytoplasmic (intracellular) Hyperphosphorylated tau protein (due to presence of Aβ) Displace or encircle nucleus 	 Amyloid proteins build up on the walls of the arteries in the brain. increases the risk of hemorrhagic, stroke and Dementia.


- What has strong correlation with the degree and severity of Dementia in Alzheimer's?
 In comparison to plaques, tangles have a stronger correlation to the degree of dementia. HOWEVER, it is not the strongest correlation because loss of synapses have the best correlation to the degree/severity of dementia.
- Enumerate 3 Biochemical markers correlated to degree of dementia.
 - 1. Loss of choline acetyltransferase
 - 2. Synaptophysin immunoreactivity
 - 3. Amyloid burden
- Briefly, explain the 2 Pathways of APP processing.

1. Normal pathway: APP is cleaved by a-secretase, followed cleavage by γ -secretase (gives soluble fragments). 2. Abnormal Pathway: APP Cleavage by β -secretase followed by γ -secretase results in production of A β (insoluble fragments).

- How does the accumulation of Aβ protein affect neurons & neuronal function? Small aggregates of Aβ alters neurotransmission and it can be toxic to neurons and synaptic endings. Larger deposits (plaques) also cause neuronal death. Elicit a local inflammatory response.
- Mention the genetic mutations and their chromosomes that related to Alzheimer's disease.

Gene	Amyloid Precursor Protein (APP)	Presenilin-1 (PS1)	Presenilin-2 (PS2)	Apolipoprotein E (ApoE)
Chromosome	21	14	1	19

• List the therapeutic approach of Alzheimer's disease NSAIDs, AchE inhibitors, Flavonoids, Stem cell therapy.

Pathogenesis of cerebral infarction

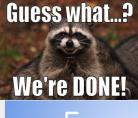
- what are the biochemical responses to an Ischemic brain injury? Oxidative stress, metabolic stress, and neurochemical response.
- Mention three antioxidant enzymes and where do they perform their function? And which ROS they work on?

- Superoxide dismutase in the mitochondria and cytosol (works on superoxide and convert it into oxygen or hydrogen peroxide)

- Glutathione peroxidase in the mitochondria and cytosol (works on hydrogen peroxide and convert it into water)
- Catalase in the peroxisomes (works on hydrogen peroxide and convert it into oxygen or water)
- What is The Role of Reactive Oxygen Species (ROS) & Reactive Nitrative Species (RNS) in <u>Normal</u> Brain Physiology?

- They modulate synaptic transmission & non-synaptic communication between neurons & glia.

- During periods of increased neuronal activity, ROS & RNS diffuse to the myelin sheath of oligodendrocytes


activating Protein kinase C (PKC) → posttranslational modification of myelin basic protein (MBP) by phosphorylation. - regulate neuronal signaling.

- Why is the brain susceptible to ROS-induced damage?
 - High concentrations of peroxidisable lipids, Low levels of protective antioxidants
 - High oxygen consumption, High levels of iron
 - The occurrence of reactions involving dopamine & Glutamate oxidase in the brain
- Explain how can NOrelease be beneficial or detrimental?
 NO produced by endothelial NOS (eNOS) improves vascular dilation & perfusion and prevention of platelet aggregation → beneficial
 NO produced by neuronal NOS (nNOS) or by the inducible form of NOS (iNOS) → detrimental (harmful)
- Inhibition of ATP-dependent ion pump in an ischemic brain injury does what change to the ions transport?

Na+ influx , K+ efflux , Ca2+ influx

- List the neurotransmitters increased during neurochemical response. Glycine , GABA , Glutamate , Dopamine
- List the molecular and vascular effects of ROS in ischemic stroke

Molecular	Vascular
 DNA damage Lipid peroxidation of unsaturated fatty acids Protein denaturation Inactivation of enzymes Cell signaling effects (e.g. release of Ca²⁺ from intracellular stores) Cytoskeletal damage Chemotaxis 	 Altered vascular tone and cerebral blood flow Increased platelet aggregability Increased endothelial cell permeability

وَجِين تُسأل يؤمئذٍ عن شَبابك فِيما أَفْنِيتهُ فإنَّ مِعْطفاً أبيض كان يَعلوك سَيشفع لك

Team leaders

Lina Alosaimi

7

Mohannad Alqarni

Team members

This magnificent work was done by: Naif Alsolais Nouf Alhumaidhi Shahd Alsalamh Leena Alnassar