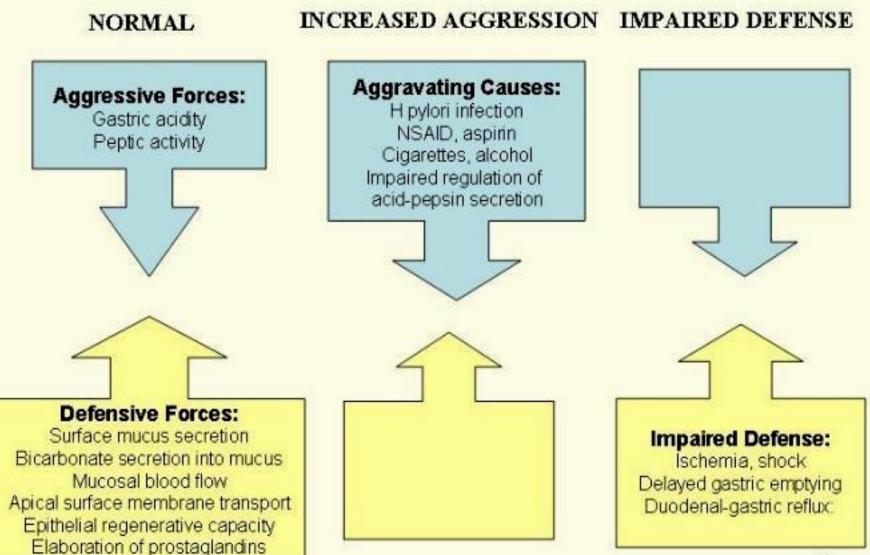

H₂ blockers and proton pump inhibitors By Prof. Hanan Hagar

Objectives:

- Understand the key points of pathophysiology of the peptic ulcer disease
- Enumerate various classes of dugs used in peptic ulcer disease
- Know the characteristic pharmacokinetics, pharmacodynamics and side effects of drugs used in peptic ulcer disease.
- Know the cytoprotective drugs mainly misoprostol and its use in NSAIDsinduced peptic ulcer.
- Identify different antacids that are used to relief pain of peptic ulcer.
- Identify potential adverse drug interactions of anti-ulcer drugs.

Peptic ulcer disease (PUD)

a localized lesion of the mucous membrane of the stomach (gastric ulcer) or duodenum (duodenal ulcer), typically extending through the muscularis mucosa.



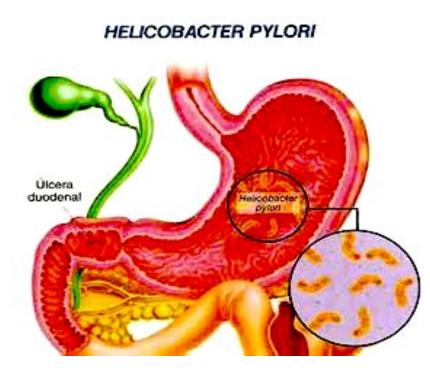
Pathophysiology:

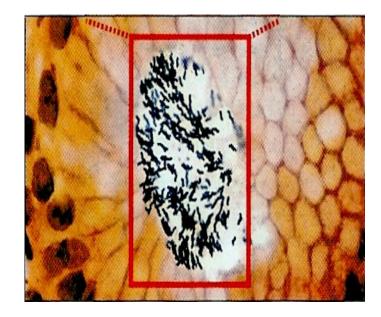
is imbalance between aggressive factors (acid & pepsin) and defensive factors (e.g. prostaglandins, mucus & bicarbonate layer).

However, nowadays, it seems that **H. pylori** theory is very important.

Peptic Ulcer Disease

Pathophysiology:


- **Aggressive factors**
- 1. Hydrochloric acid and pepsin destroy gastric and duodenal mucosa.


Defensive factors

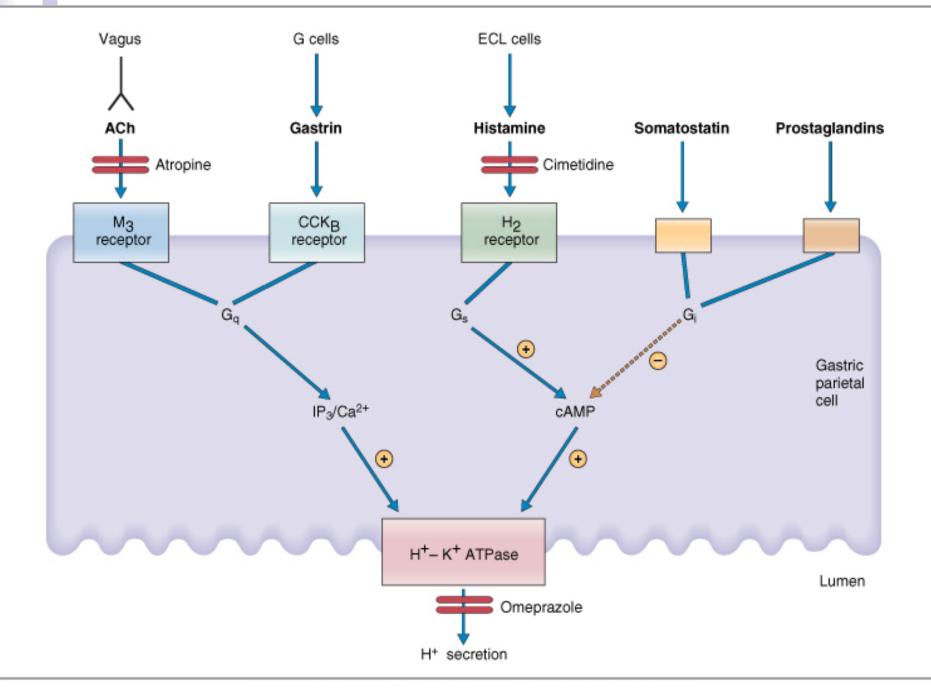
- 1. Mucus and bicarbonate ion secretions protect mucosa
- 2. **Prostaglandins** (PGE₂ & PGI₂) protect mucosa by:
 - inhibiting acid secretion
 - increasing mucus and bicarbonate production
 - enhancing mucosal blood flow.

Pathophysiology:

Helicobacter pylori is the major etiological factor in peptic ulcer disease (95% in duodenal and 80% in gastric ulcer).

Etiology: >H. pylori infection >Drugs (e.g.) NSAIDs; corticosteroids ≻Alcohol **≻**Smoking **≻**Caffeine >Genetic factors

≻Diet

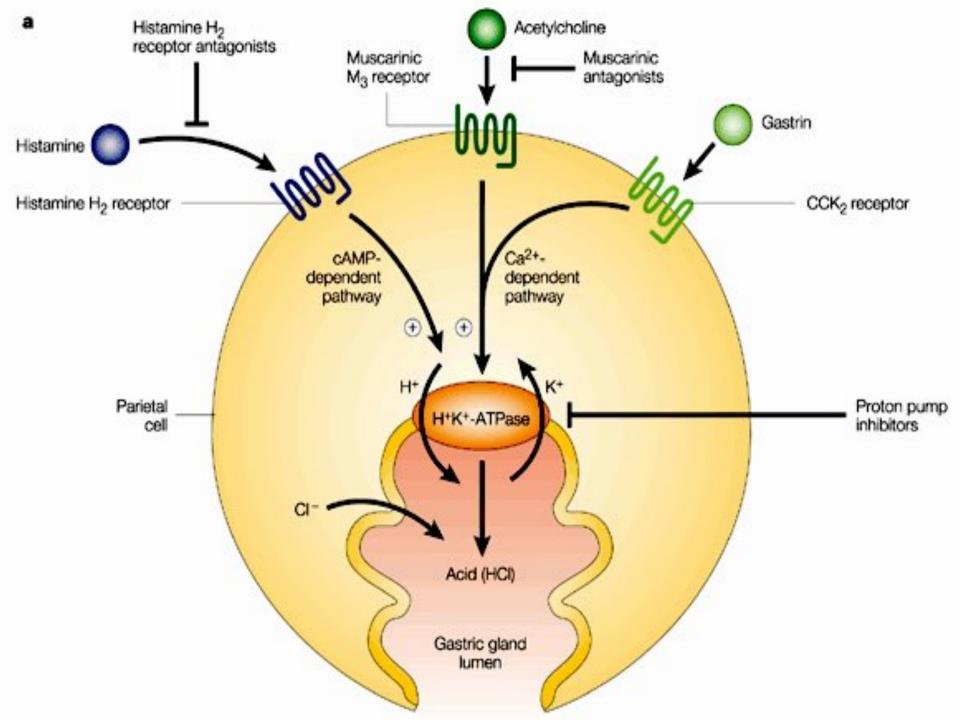

>Hypersecretory states (Zollinger Ellison syndrome)

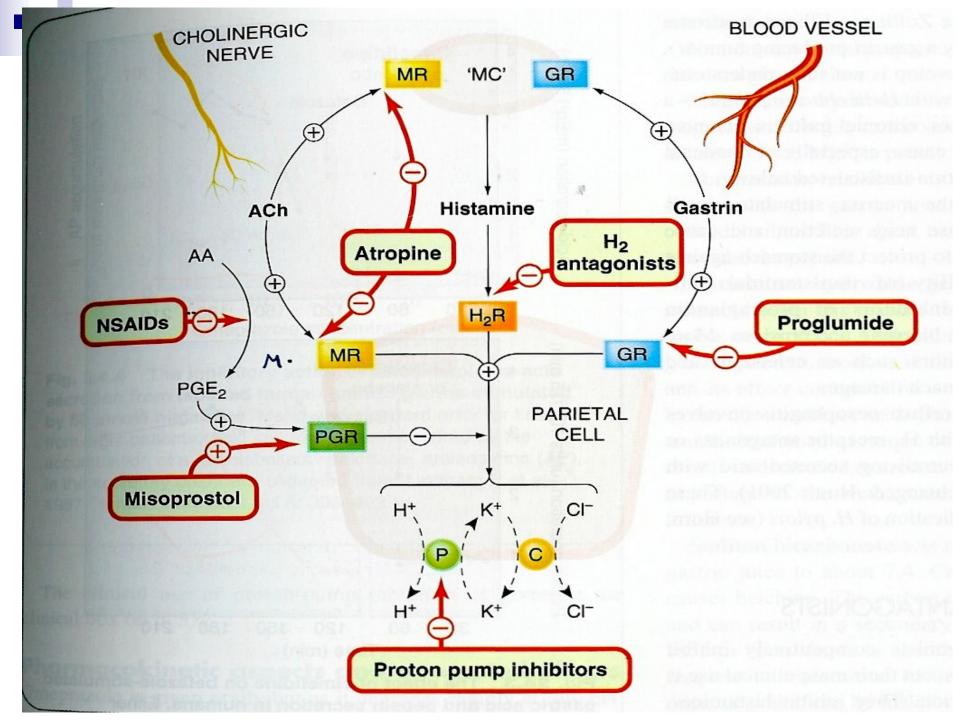
Gastric secretions

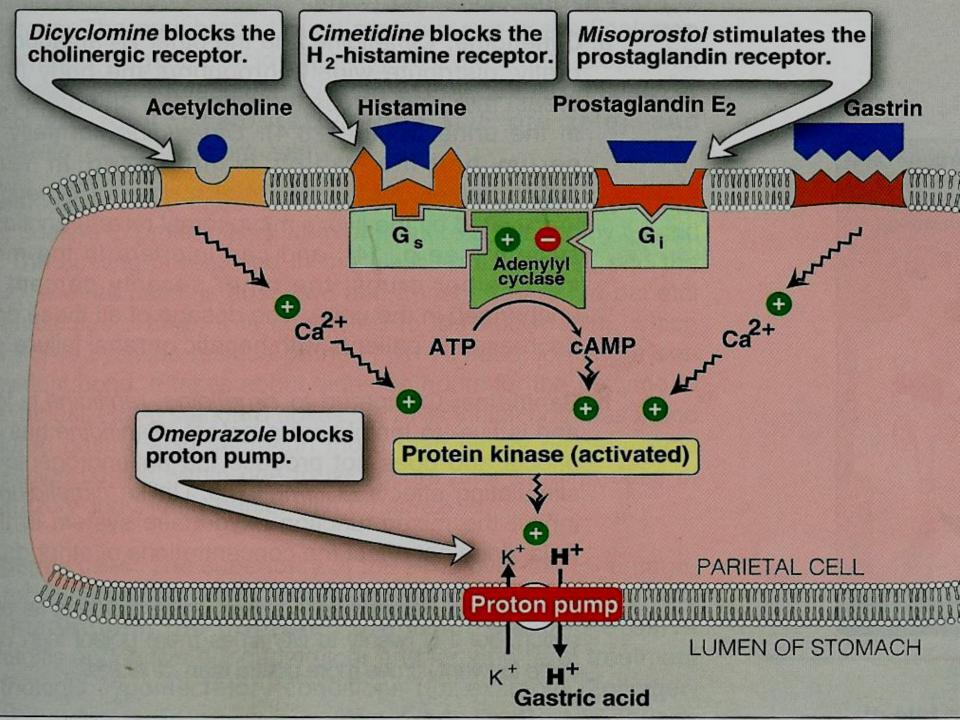
- 1. HCl and intrinsic factor (Parietal cells).
- 2. Pepsinogens (Chief cells).
- 3. Mucus, bicarbonate (mucus-secreting cells).

Regulation of gastric secretions Parietal cells secrete acid in response to:

- 1. Ach (neurotransmitter): M₃ receptors
- 2. Gastrin (hormone): CCK₂ receptors (cholecystokinin)
- 3. Histamine (local hormone): H₂ receptors
- 4. Proton pump (H+/ K+ ATPase)




© Elsevier. Costanzo: Physiology 3E www.studentconsult.com


Treatment of peptic ulcer

- Eradication of H. pylori infections
- Hyposecretory drugs.
 - Proton pump inhibitors
 - H₂ receptor blockers
 - Antimuscarinic drugs
- Mucosal cytoprotective agents.
 - Prostaglandin analogues
- Neutralizing agents (antacids).

Gastric hyposecretory drugs

Hyposecretory drugs decrease gastric acid secretion **>** Promote healing & relieve pain.

Include:

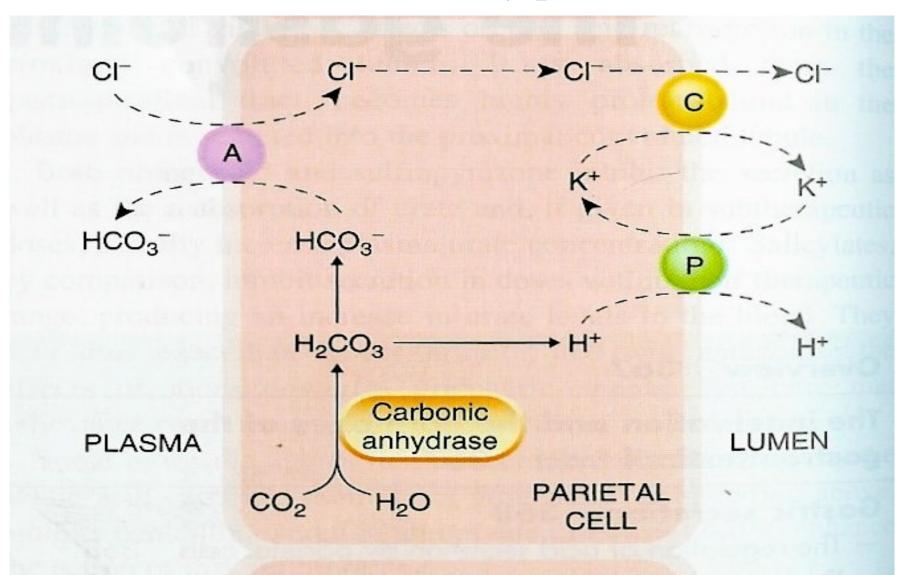
- Proton pump inhibitors
- H₂ receptor blockers
- Antimuscarinic drugs

Proton Pump Inhibitor Drugs

14 tablets

40

AstraZeneca



Proton Pump Inhibitors (PPIs) Omeprazole – Lansoprazole Pantoprazole - Raprazole

Acts by irreversible <u>inhibition of proton pump</u> (<u>H+/ K+ ATPase</u>) that is responsible for final step in gastric acid secretion from the parietal cell (they covalently bind to the pump).

Gastric secretion by parietal cells

Pharmacodynamics

- They are the most potent inhibitors of acid secretion available today.
- Produce marked inhibition of basal & meal stimulated-acid secretion (90-98%).
- Reduce pepsin activity.
- Promote mucosal healing & decrease pain.
- Proton pump inhibitors heal ulcers faster than H₂ blockers, and have H. pylori inhibitory properties.

Pharmacokinetics of PPIs

- Given orally
- Are pro-drugs
- Given as enteric coated formulations (unstable in acidic medium in stomach).
- Are rapidly absorbed from the intestine.
- Are activated within the acidic medium of parietal cell canaliculi.
- At neutral pH, PPIs are inactivated.
- Should not combined with H₂ blockers or antacids.

- Bioavailability is reduced by food.
- Given one hour before the meal.
- Have long duration of action (> 12 h-24 h).
- Once daily dose is sufficient
- Metabolized in the liver by Cyt-P450.
- Dose reduction is required in severe liver failure.

USES of PPIs

- >Eradication of H. pylori (combined with antimicrobial drugs).
- >Resistant severe peptic ulcer (4-8 weeks).
- > Gastroesophageal reflux disease (GERD).
- >Hypersecretory conditions as Zollinger Ellison syndrome and gastrinoma (First choice).

Zollinger Ellison syndrome

is a disease in which Gastrin -secreting tumor cause the stomach to produce too much acid, resulting in peptic ulcers.

Symptoms: abdominal pain and diarrhea.

Gastrin produces:

- Parietal cell hyperplasia (trophic factor).
- Excessive gastric acid production.
- Diarrhea

Adverse effects to PPIs

- CNS: Headache
- GIT: Diarrhea & abdominal pain.
- Achlorhydria & hypergastrinaemia.
- Gastric mucosal hyperplasia.
- Infection
 - Increased bacterial flora
 - Increased risk of community-acquired respiratory infections & nosocomial pneumonia

Long term use may lead to

- Vitamin B₁₂ deficiency
- Hypomagnesaemia
- Osteoporosis

Adverse effects to PPIs

Precaution should be given not to combine
 omeprazole (CYP2C19 inhibitor) and clopidogrel
 (CYP2C19 is required for activation of clopidogrel).

H2 receptor blockers

- Cimetidine Ranitidine
- Famotidine Nizatidine
- **Mechanism of action**
- They <u>reversibly and competitively</u> block H_2 receptors on the parietal cells.

Pharmacokinetics

- Good oral absorption
- Given before meals.
- Famotidine is the most potent drug.
- Exposed to first pass metabolism (except nizatidine that has the greatest bioavailability)
- Duration of action (4-12 h).
- Metabolized by liver.
- Excreted mainly in urine.

1	CIMETIDI	NE	RANITIDINE	FAMOTIDINE	NIZATIDINE
Efficacy	+	++	+++	┿ ╋╋	+++
Potency	-	+	┿┾	╋╋	
Dose	400 mg	bid	150 mg bid	20mg bid	150 mg bid
Route orally, IV			orally, IV	orally, IV	orally
T 1/2	short	(2 h)	longer (3h)	longer (3h) shortest (1
Duration	5	5-6 h	10 h	12 h	11 h
CYT P 45	50	++	- · · ·	-	-
Antiandr	ogenic	++	-	-	-
Drug inte	ractions 1	many	No	No	No
		1		I	l

Pharmacological actions:

- Reduce basal and food stimulated-acid secretion
- Block 90% of nocturnal acid secretion (which depend largely on histamine) & 60-70% of total 24 hr acid secretion. Therefore, it is better to be given <u>before night sleep</u>.
- Reduce pepsin activity.
- Promote mucosal healing & decrease pain

Uses:

- GERD (heartburn/ dyspepsia).
- Acute ulcer healing in <u>moderate</u> cases
 - Duodenal Ulcer (6-8 weeks).
 - Benign gastric ulcer (8-12 weeks).
 - Prevention of bleeding from stress-related gastritis.
- Pre-anesthetic medication (to prevent aspiration pneumonitis).
- Post–ulcer healing maintenance therapy.

Adverse effects of H₂ blockers

- **GIT disturbances:** Nausea & vomiting.
- CNS effects: Headache confusion

(elderly, hepatic dysfunction, renal dysfunction).

- Bradycardia and hypotension (rapid I.V.)
- CYT-P450 inhibition (Only Cimetidine)

decrease metabolism of warfarin, phenytoin, benzodiazepines.

Endocrine effects (Only Cimetidine)

- Galactorrhea (Hyperprolactinemia)
- Antiandrogenic actions (gynecomastia impotence) due to inhibition of dihydrotestosterone binding to androgen receptors.

Precautions

Dose reduction of H_2 receptor blockers in severe renal or hepatic failure and elderly.

Prostaglandin analogues Misoprostol

- Prostaglandin analogues (PGE1)
 ↓ HCL secretion.
- ↑ protective measures (↑ mucous/bicarbonate & gastric mucosal blood flow).
- Orally, must be taken 3-4 times/day.
- Used for NSAIDS-induced peptic ulcer.

Adverse effects:

- Abdominal cramps; diarrhea.
- Uterine contraction (dysmenorrhea or abortion).Vaginal bleeding.

- These drugs are mainly inorganic salts
- e.g.: NaHCO₃; CaCO₃; Al(OH)₃; Mg(OH)₂
- acts by direct chemical neutralization of HCL and decrease pepsin activity.
- used to relief pain of peptic ulcer & dyspepsia.
- All antacids ↓ absorption of some drugs as tetracycline, fluoroquinolones, iron.

NaHCO3 (Sodium bicarbonate):

Effective, but systemic alkalosis may occur.

* Contraindicated in CVS patients

Aluminum hydroxide:

- Constipation
- Hypophophatemia (weakness, malaise, anorexia)
- Seizure

Magnesium hydroxide:

- Diarrhea
- Hypotension & Cardiac arrest

Calcium carbonate

- Milk-alkali syndrome
- Hyercalcemia
- Renal failure
- ↓ absorption of tetracycline

Summary

- Test for H. pylori prior to beginning therapy.
- Acid-reducing medications are prescribed in case of PUD without H pylori infections.
- Acid-reducing medications for PUD include:
 - \blacksquare H₂ receptor blockers
 - PPIs should be used for acute therapy only if H2RAs fail or cannot be used, or as part of treatment for H. pylori.
- Complete H. pylori eradication is required to prevent relapse.
- PUD with H pylori infections can be treated with triple therapy or quadrable therapy