Structure and function of hemoglobin ## **Objectives** By the end of this lecture, the students should be able to know: - the structure and function of hemoglobin. - the factors affecting oxygen binding to hemoglobin. - examples of normal and abnormal hemoglobin structures. # Hemoglobin (Hb) - A hemeprotein found only in red blood cells - Oxygen transport function - Contains heme as prosthetic group - Heme reversibly binds to oxygen ### The heme group - A complex of protoporphyrin IX and ferrous iron (Fe²⁺) - Fe²⁺ is present in the center of the heme - Fe²⁺ binds to four nitrogen atoms of the porphyrin ring - Forms two additional bonds with: - Histidine residue of globin chain - Oxygen The heme group: Fe^{2+} porphyrin complex with bound O_2 # Types of Hb | Form | Chain composition | Fraction of total hemoglobin | |-------------------|----------------------------|------------------------------| | HbA | $\alpha_2\beta_2$ | 90% | | HbF | $\alpha_2 \gamma_2$ | <2% | | HbA ₂ | $\alpha_2\delta_2$ | 2%–5% | | HbA _{1c} | $\alpha_2\beta_2$ -glucose | 3%–9% | | Abnormal: | Carboxy Hb | |-----------|------------| | | Met Hb | | | Sulf Hb | # Hemoglobin A (HbA) - Major Hb in adults - Composed of four polypetide chains: - Two α and two β chains - \blacksquare Contains two dimers of $\alpha\beta$ subunits - Held together by non-covalent interactions - Each chain is a subunit with a heme group in the center that carries oxygen - A Hb molecule contains 4 heme groups and carries 4 moelcules of O₂ # Polypeptide chains β chains (146 a.a.) Fe²⁺ α chains (141 a.a.) Heme (protoporphyrin + iron) #### HbA structure Copyright @ 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins ### T-form of Hb - The deoxy form of Hb - Taut form - The movement of dimers is constrained - Low-oxygen-affinity form #### R-form of Hb - The oxygenated form of Hb - Relaxed form - The dimers have more freedom of movement - High-oxygen-affinity form # Hemoglobin function - Carries oxygen from the lungs to tissues - Carries carbon dioxide from tissues back to the lungs - Normal level (g/dL): Males: 14-16 Females: 13-15 # Factors affecting oxygen binding - Four allosteric effectors: - pO₂ (partial oxygen pressure) - pH of the environment - pCO₂ (partial carbon dioxide pressure) - Availability of 2,3-bisphosphoglycerate ## Oxygen Dissociation Curve - The curve is sigmoidal - Indicates cooperation of subunits in O₂ binding - Binding of O₂ to one heme group increases O₂ affinity of others - Heme-heme interaction Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins # P₅₀ - Indicates affinity of Hb to O₂ - P₅₀(mm Hg): the pressure at which Hb is 50% saturated with O₂ - High affinity \rightarrow slow unloading of O_2 - Low affinity → fast unloading of O₂ - Lung pO₂ is 100 mm \rightarrow Hb saturation 100% - Tissue pO_2 is 40 mm \rightarrow Hb saturation reduces - Hence O₂ is delivered to tissues ### The Bohr effect - It is the shift of the ODC to the right in response to an increase in pCO2 or a decrease in pH - Effect of pH and pCO₂ on: - Oxygenation of Hb in the lungs - Deoxygenation in tissues - Tissues have lower pH (acidic) than lungs - oxygen affinity of hemoglobin and, therefore, a shift to the right in the oxygen dissociation curve. pH = 7.6100 r % Saturation with O₂ (Y) pH = 7.2At lower pH, a greater pO2 is 50 required to achieve any given oxygen saturation. 120 Partial pressure of oxygen (pO₂) (mm Ha) Decrease in pH results in decreased - Due to proton generation (two reactions): - $CO_2 + H_2O \implies H_2CO_3$ - \blacksquare H₂CO₃ \Longrightarrow HCO₃ + H⁺ - Protons reduce O₂ affinity of Hb #### The Bohr Effect - Causing easier O₂ release into the tissues - The free Hb binds to two protons - Protons are released and react with HCO^3 to form CO_2 gas $(HCO_3^- + H^+ \rightarrow CO_2 + H_2O)$ - The proton-poor Hb now has greater affinity for O₂ (in lungs) - The Bohr effect removes insoluble CO₂ from blood stream - Produces soluble bicarbonate ### Availability of 2,3 bisphosphoglycerate - Binds to deoxy-hb and stabilizes the T-form - When oxygen binds to Hb, BPG is released At high altitudes: - -RBC number increases - -Hb conc. increases - -BPG increases Copyright @ 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins # High altitude and O₂ affinity - In hypoxia and high altitude - 2,3 BPG levels rise - This decreases O₂ affinity of Hb - Thus increases O₂ delivery to tissues # High O₂ affinity High O₂ affinity is due to: - Alkalosis - High levels of Hb F - Multiple transfusion of 2,3 DPG-depleted blood # Fetal Hemoglobin (HbF) - Major hemoglobin found in the fetus and newborn - Tetramer with two α and two γ chains - Higher affinity for O₂ than HBA - Transfers O₂ from maternal to fetal circulation across placenta # HbA₂ - Appears shortly before birth. - Constitutes ~2% of total Hb - $\begin{tabular}{ll} \blacksquare Composed of two α \\ and two δ globin \\ chains \\ \end{tabular}$ # HbA_{1c} - HbA undergoes nonenzymatic glycosylation - Glycosylation depends on plasma glucose levels - HbA1c levels are high in patients with diabetes mellitus Copyright @ 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins ### **Abnormal Hbs** - Unable to transport O₂ due to abnormal structure - Carboxy-Hb: CO replaces O₂ and binds 220X tighter than O₂ (in smokers) - Met-Hb: Contains oxidized Fe³⁺ (~2%) that cannot carry O₂ - Sulf-HB: Forms due to high sulfur levels in blood (irreversible reaction) ### Reference Lippincott's Illustrated Reviews Biochemistry: Unit I, Chapter 3, Pages 25 -42.