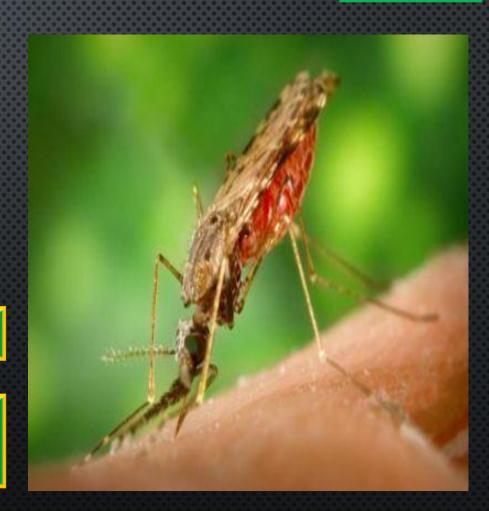
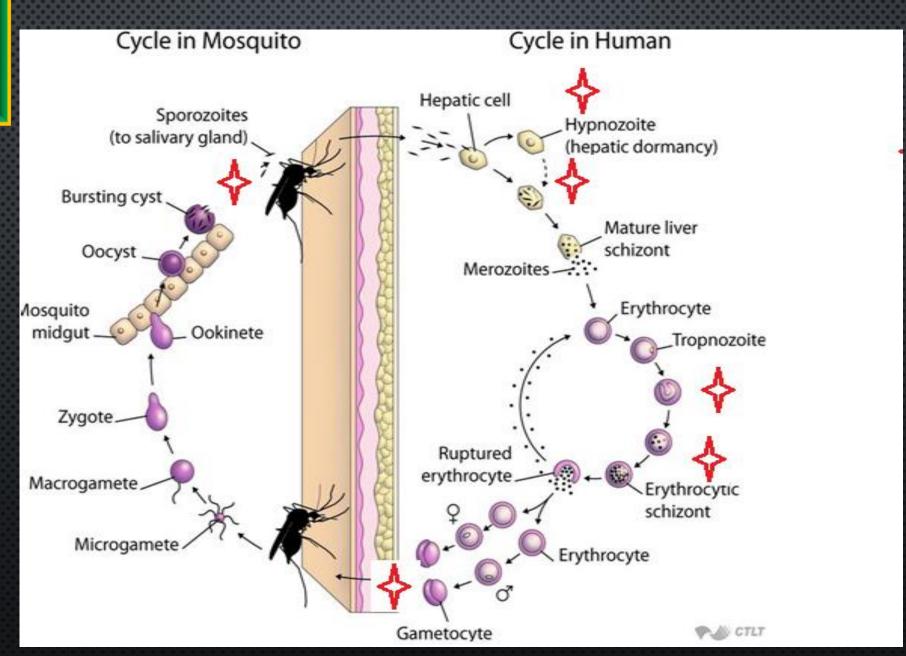
ANTIMALARIAL DRUGS

- @ Malaria causes 900,000 deaths annually
- @ Resistance developed to chloroquine, mefloquine, quinine, atovaquone, pyrimethamine/sulfadoxin
- @ Chloroquine, primaquine, 1946-1947
- @ Mefloquine, halofantrine, lumefantrine, 1967-1970
- © Cost To Develop One New Drug Is \$2.6 Billion



VACCINATION?


ANTIMALARIAL DRUGS

ILOS

- © Classify the main antimalarial drugs depending on their goal of therapy
- © Detail the pharmacokinetics & dynamics of main drugs used to treat attack or prevent relapses
- State the WHO therapeutic strategy for treatment
- We have the CDC recommendations for prophylaxis in travelers to endemic areas

Cycle & Drugs site of action

ANTIMALARIAL DRUGS

THERAPEUTIC CLASSIFICATION

Causal prophylaxis

Destroys parasite in liver cells & prevent invasion of erythrocytes

Primaquine

Supressive prophylaxis

Suppresses the erythrocytic phase & thus attack of malaria fever

Chloroquine, mefloquine, doxycycline

ANTIMALARIAL DRUGS

THERAPEUTIC CLASSIFICATION

Radical cure (erythrocytic

schizonicide)

Gametocidal high efficacy

Slow acting low efficacy Sprozoitocides Eradicate all forms of vivax from the body

Destroys
gametocytes
& prevent
transmission

Destroys sporozoites

Suppressive drug + hypnozoitocidal

Chloroquine, quinine against vivax

Primaquine, all species

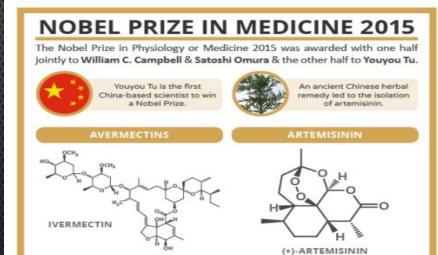
Proguanil, pyrimethamine

@ Artemisinin is the active principle of the plant Artemisia annua(qinghaosu)

Affect all forms including multidrug resistant *P. falciparum*

© Short duration of action

@ High recrudescence rate


A class of compounds, discovered

by Omura and Campbell, that kill

roundworms, parasites that cause

diseases such as river blindness.

© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | @COMPOUNDCHEM

An antimalarial drug discovered by Tu

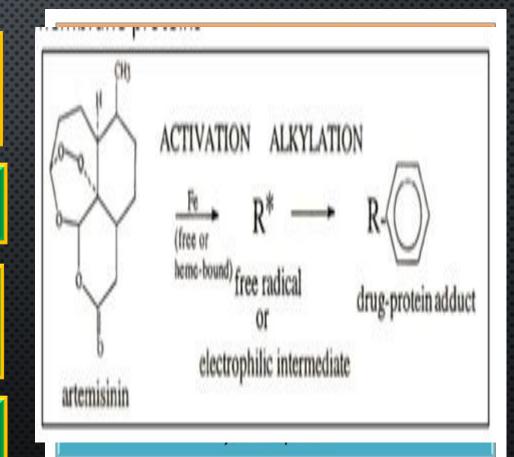
in the 1970s. It was derived from the

wormwood plant, after a search of herbal

remedies to find antimalarial drugs.

@ Poorly soluble in water & oil, can only be used orally

PHARMAOKINETICS


- Artemisinin ,artesunate, artemether are prodrugs
- © Derivatives are rapidly absorbed orally
- Widely distributed
- @t½ artemisinin → 4hrs / artesunate → 45min / artemether 4-11hrs
- @Artesunate (water-soluble; oral, IV, IM, rectal administration)
- ©Dihydroartemisinin (water-soluble; oral administration)
- @Induce its own CYP-mediated metabolism→ ↑ clearance 5 fold

MECHANISM

They have endoperoxide bridges that are cleaved by haem iron to yield carbon- centered free radicals, that will-

- © Irreversibly bind & inhibit sarco-endoplasmic reticulum Ca²⁺-ATPase of the parasite, thereby inhibiting its growth
- Inhibiting formation of transport vesicles no food vacuoles

ADRS

@Transient heart block

@Brief episodes of fever

Resistance > was reported recently in Cambodia- Thailand border

CLINICAL USES

© Because artemisinin derivatives have short t½, (1) monotherapy should be extended beyond disappearance of parasite to prevent recrudescence or (2) by combining the drug with long- acting antimalarial drug

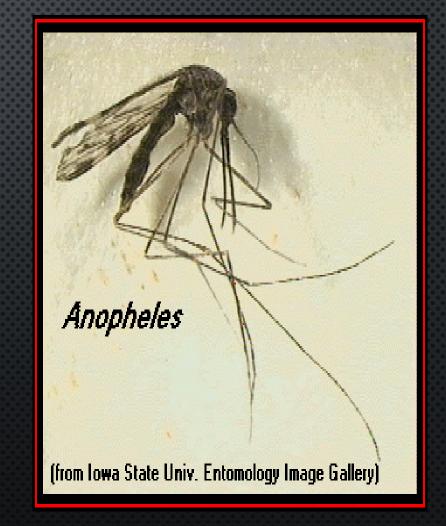
PREPARATIONS

e Artesunate IV or IM preparations for severe complicated cases as cerebral malaria (24h) followed by complete course of ACT

PREPARATIONS

- @Artemisinin-based combination therapies (ACTs):
 - > Artemether + lumefantrine
 - > Artemether + amodiaquine
 - ➤ Artemether + mefloquine
 - > Artemether + sulfadoxine- pyrimethamine

ANTIMALARIAL DRUGS


CHLOROQUINE

Potent blood Schizontocide

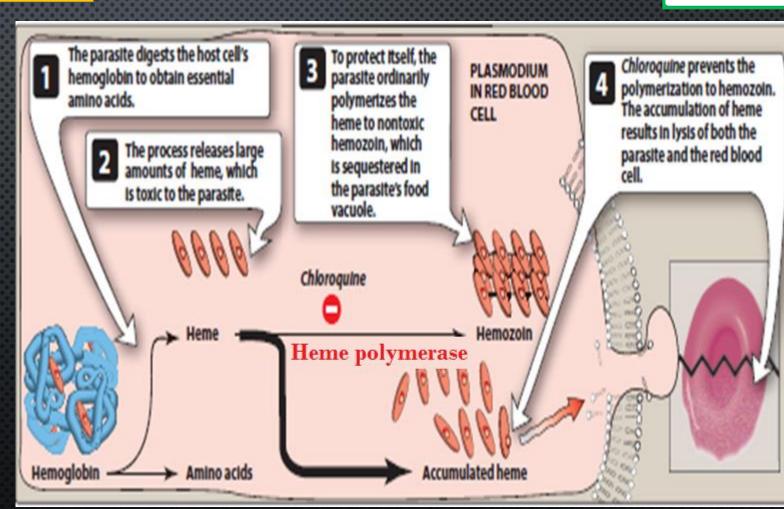
Active against all forms of the schizonts (exception is chloroquine-resistant P.f. & P.v.)

No activity against tissue schizonts

@ Gametocide:-Against all species except P. falciparum

PHARMACOKINETICS

- @ Rapidly & completely absorbed from the GIT
- @ Has high volume of distribution(100-1000l/kg)
- © Concentrated into parasitized RBCs
- Released slowly from tissues
- @ Metabolized in the liver
- © Excreted in the urine 70% unchanged
- @ Initial t½ =2-3days & terminal t ½=1-2months



MECHANISM OF ACTION

Malaria Parasite digest host cell's Hb to obtain amino acids

Heme is released → Toxic
So parasite detoxifies it by
heme polymerase →
Hemozoin (NonToxic) &
traps it in food vacuole

ADRS

- 1. Mild headache and visual disturbances
- 2. Gastro-intestinal upsets; Nausea, vomiting
- 3. Pruritus, urticaria.

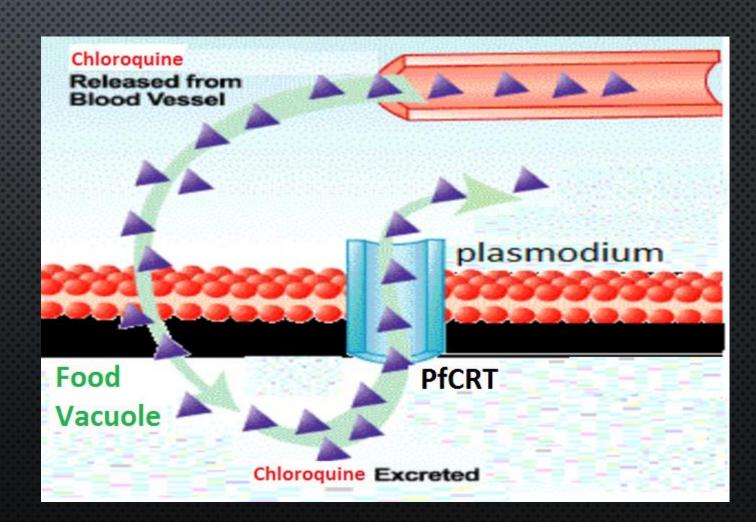
Prolonged therapy

Ocular toxicity: Loss of accommodation, lenticular opacity, retinopathy

Ototoxicity

Weight loss

Bolus injection→ hypotension & dysrrhythmias


Safe in pregnancy

RESISTANCE

Resistance against the drug develops as a result of mutation of the chloroquine resistance transporter (PfCRT)

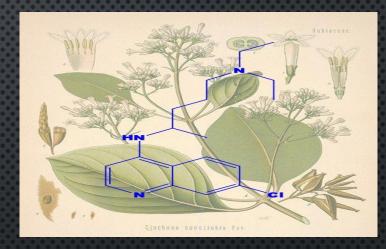
PfCRT enhances the efflux of chloroquine from the food vacuole

THERAPEUTIC USES

Used to eradicate blood schizonts of *Plasmodium*

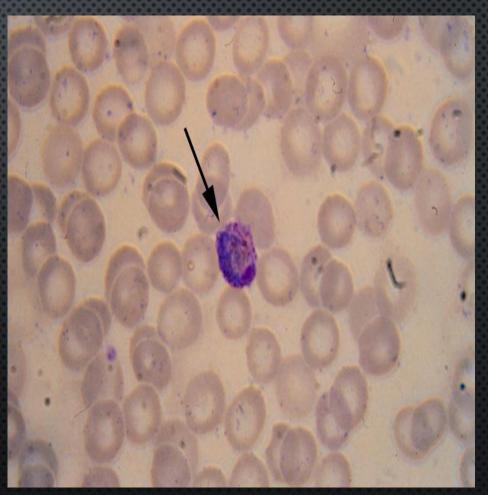
Hepatic amoebiasis

Rheumatoid arthritis


Plasmodium falciparum

(original image provided by Steve Aley)

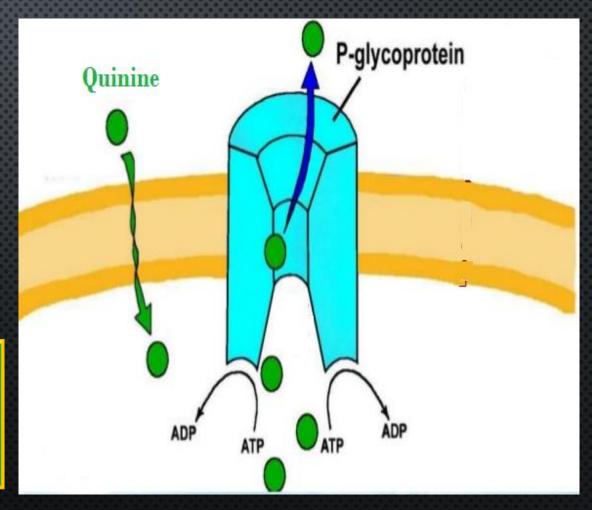
- The main alkaloid in cinchona bark
- Potent blood Schizontocide of all malarial parasites & weak gametocide for vivax & ovale
- © Depresses the myocardium, reduce excitability & conductivity
- @ Mild analgesic, antipyretic, stimulation of uterine smooth muscle, curaremimetic effect



PHARMACOKINETICS

- Rapidly & completely absorbed from the GIT
- Peaks after 1-3 hours
- Metabolized in the liver & excreted in urine
- © 5-20% excreted in the urine unchanged
- © t½ = 10 hrs but longer in sever falciparum infection(18hrs)

Administered: orally in a 7 day course or by slow IV for severe *P. falciparum* infection



MECHANISM

Same as chloroquine

MECHANISM OF RESISTANCE

Like chloroquine by mutation of chloroquine resistance transporter, also increased expression of P-glycoprotein transporter

ADRS

With therapeutic dose → poor compliance → bitter taste.

ঁ @ Cinchonism → (tinnitus, deafness, headaches, nausea & vis

@Abdominal pain & diarrhea

Rashes, fever, hypersensitivity reactions

@Blood dyscarasis; anaemia, thrombocytopenic purpura & h

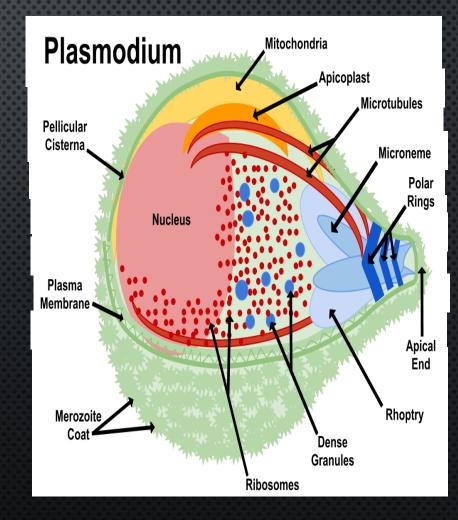
@Blackwater fever, a fatal condition in which acute haemolytical anaemia is associated with renal failure

IV → neurotoxicity → tremor of the lips and limbs, delirium, fits, stimulation followed by depression of respiration & coma

Safe

CONTRAINDICATIONS

@Glucose-6-Phosphate Dehydrogenase Deficiency


Myasthenia Gravis

@Hypersensitivity

Optic Neuritis, auditory problems

© Dose should be reduced in renal insufficiency

CLINICAL USES

Parenteral treatment of severe falciparum malaria

Oral treatment of falciparum malaria

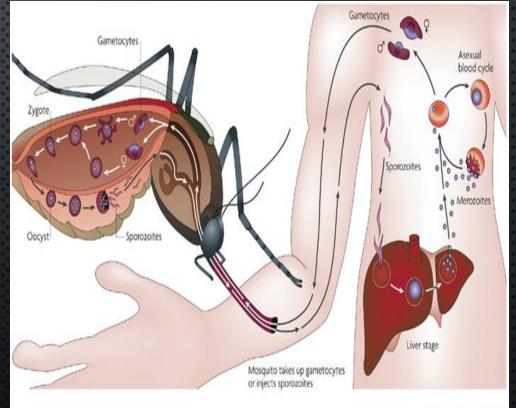
Nocturnal leg cramps??

DRUG INTERACTIONS

Antacids: Antacids containing aluminum &/or magnesium may delay or decrease absorption of quinine

Mefloquine

Quinine can raise plasma levels of warfarin and digoxin


Radical cure of P. ovale & P. vivax

Prevent spread of all forms

PHARMACOKINETICS

Well absorbed orally

Rapidly metabolized to etaquine & tafenoquine → more active
tafenoquine → active
tafenoquine → active

MECHANISM

Not well understood. It may be acting by:-

©Generating ROS → can damage lipids, proteins & nucleic acids

Interfering with the electron transport in the parasite → no energy

Inhibiting formation of transport vesicles →no food vacuoles

Resistance; Rare when primaquine & chloroguine are combined

Primaquine

Converted to electrophiles

Generates reactive oxygen species

Interferes with oxygen transport system

ADRS

At regular doses → patients with G-6-PD deficiency → hemolytic anemia.

©Oxidation of primaqune produces free radicals

CLINICAL USES

Radical cure of relapsing malaria, 15mg/day for 14 days

In falciparum malaria: a single dose (45mg) to kill gametes & cut down transmission

G-6-PD NORMAL

G-6-PD deficiency (Mild African form)

G-6-PD deficiency (More severe Mediterranean variety)

15mg per day x 14

45mg per week for 8

30mg per week for 30

weeks

Should be avoided in pregnancy (the fetus is relatively G6PD-deficient and thus at risk of hemolysis) & G6PD deficiency patients

the urine

Primaquine

WHO TREATMENT GUIDELINES

IN VIVAX

IN FALICPARUM

All show Resistance

OMPLICATED

COMPLICATED | IV Artesunate for 24 hrs followed by ACT Or Artemether + [Clindamycin / doxycyline]

Or Quinine + [Clindamycin / doxycyline]

WHO TREATMENT GUIDELINES

IN FALICPARUM

SPECIAL RISK GROUPS

Pregnancy; 1st trimester

Pregnancy; 2nd & 3rd trimester Lactating women Infants & young children Quinine + Clindamycin (7 days)

ACT

PROPHYLAXIS IN TRAVELLERS

CDC RECOMENDATIONS

Chloroquine

Mefloquine

Doxycycline

Areas without resistant P falciparum

Areas with chloroquine-resistant P falciparum

Areas with multidrug-resistant P falciparum

Begin 1-2 weeks before departure (except for doxycycline 2 days) & continue for 4 weeks after leaving the endemic area