COAGULATION MECHANISMS

DR SYED SHAHID HABIB
Professor & Consultant Clinical Physiology
Dept. of Physiology
College of Medicine & KKUH

Vessel injury

Antithrombogenic (Favors fluid blood)

Thrombogenic (Favors clotting)

HANDOUTS...12/16/2019

OBJECTIVES

At the end of the lecture you should be able to...

- Recognize different stages of haemostasis
- Explain the role of platelets in haemostasis.
- Recognize different clotting factors & cascade of clotting.
- Describe the intrinsic, extrinsic and common pathway.
- Recognize the role of thrombin in coagulation
- The role of anticoagulants and their mechanism of action

HAEMOSTASIS

The spontaneous arrest of bleeding from ruptured blood vessels

FOUR STEPS OF HEMOSTASIS

- 1. VASCULAR PHASE ► Vascular Spasm
- 2. PLATELET PHASE ► Formation of platelet plug
- 3. COAGULATION PHASE ► Blood Coagulation & Clot Retraction
- **4. FIBRINOLYTIC PHASE** ► **Fibrinolysis**

1-VASCULAR SPASM (Vascular Constriction)

Immediately After injury there is localized Vasoconstriction.

- Causative Factors are three (3)
 - 1. Nervous reflexes
 - 2. Local myogenic spasm
 - Local humoral factors....Platelets → Thromboxane A₂
 [TXA2] (Vasoconstrictor)
- Importance
 - **\star** Crushing injuries \rightarrow Intense spasm \rightarrow No lethal loss of blood

TXA2 is inhibited by aspirin...How?

A. VASOCONSTRICTION Basement membrane Arteriole smooth muscle Endothelium Site of injury ECM (collagen) Endothelin release Reflex vasoconstriction causes vasoconstriction

2-FORMATION OF PLATELET PLUG [PRIMARY HEMOSTASIS]

B. PRIMARY HEMOSTASIS **ADP** causes stickiness 2 Shape change Recruitment 3 Granule release (ADP, TXA₂) 1) Platelet adhesion Aggregation (hemostatic vWF plug Endothelium Basement Collagen membrane Serotonin (5HT) & thromboxane A2 are vasoconstrictors

3-BLOOD COAGULATION

Formation of Clot or Thrombus

[SECONDARY HEMOSTASIS]

- Blood clotting is the transformation of blood (soluble fibrinogen) from a liquid into a solid gel form (insoluble fibrin strands)
- Pathways
 - * Intrinsic
 - * Extrinsic
- Begins to develop in
 - **❖ 1-2 min** → **Minor trauma**
 - **❖ 15-20** sec → Severe trauma

fibrin fibrinogen

CLOT is a meshwork of fibrin fibres running in all directions entrapping blood cells, platelets and plasma.

C. SECONDARY HEMOSTASIS

D. THROMBUS AND ANTITHROMBOTIC EVENTS

MECHANISM OF CLOTTING - STEPS

- 1. Formation of Prothrombin activator complex (Xa+Ca+PF-3+V) by Extrinsic & Intrinsic Pathways leading to Common Pathway
- 2. Conversion of prothrombin into thrombin
- 3. Conversion of fibrinogen into fibrin
- 4. Fibrin converts to stable fibrin polymer

Clotting Factors Guyton

Prothrombin

- Plasma protein (Alpha₂ globulin)
- ***** Mol. Wt. 68,700
- Plasma conc. 15 mg/dl
- Unstable protein
- Synthesized by liver
- Vitamin-K is required for synthesis

Fibrinogen

- **Mol. Wt. 340,000**
- Plasma conc. 100 700
 mg/dl
- Synthesized in liver

Table 36-1

Clotting Factors in Blood and Their Synonyms

Clotting Factor	Synonyms
Fibrinogen	Factor I
Prothrombin	Factor II
Tissue factor	Factor III; tissue thromboplastin
Calcium	Factor IV
Factor V	Proaccelerin; labile factor; Ac-globulin (Ac-G)
Factor VII	Serum prothrombin conversion accelerator (SPCA); proconvertin;
	stable factor
Factor VIII	Antihemophilic factor (AHF); antihemophilic globulin (AHG);
F . W	antihemophilic factor A
Factor IX	Plasma thromboplastin component
	(PTC); Christmas factor;
F	antihemophilic factor B
Factor X	Stuart factor; Stuart-Prower factor
Factor XI	Plasma thromboplastin antecedent (PTA); antihemophilic factor C
Factor XII	Hageman factor
Factor XIII	Fibrin-stabilizing factor
Prekallikrein	Fletcher factor
High-molecular-weight	Fitzgerald factor; HMWK
kininogen	(high-molecular-weight) kininogen
Platelets	

Clotting Factors Ganong

TABLE 31–5 System for naming blood-clotting factors.

Factora	Names
1	Fibrinogen
II	Prothrombin
III	Thromboplastin
IV	Calcium
V	Proaccelerin, labile factor, accelerator globulin
VII	Proconvertin, SPCA, stable factor
VIII	Antihemophilic factor (AHF), antihemophilic factor A, antihemophilic globulin (AHG)
IX	Plasma thromboplastic component (PTC), Christmas factor, antihemophilic factor B
X	Stuart–Prower factor
XI	Plasma thromboplastin antecedent (PTA), antihemophilic factor C
XII	Hageman factor, glass factor
XIII	Fibrin-stabilizing factor, Laki–Lorand factor
HMW-K	High-molecular-weight kininogen, Fitzgerald factor
Pre-Ka	Prekallikrein, Fletcher factor
Ka	Kallikrein
PL	Platelet phospholipid

^aFactor VI is not a separate entity and has been dropped.

EXTRINSIC MECHNANISM FOR INITIATING CLOTTING

TF or tissue
thromboplastin;
includes phospholipids
from the membranes of
the tissue plus a
lipoprotein complex
that functions mainly
as a proteolytic
enzyme.

INTRINSIC MECHNANISM FOR INITIATING CLOTTING

Trauma to the blood itself or exposure of the blood to collagen (from a traumatized blood vessel wall), foreign surface/glass

ACTION OF THROMBIN ON FIBRONOGEN TO FORM FIBRIN

ROLES OF THROMBIN IN HEMOSTASIS

CLOT RETRACTION

- When clot retracts (contracts), it expresses most of the fluid from the clot within 20-60 min called → Serum
- Serum cannot clot
- Role of platelets in clot formation & retraction.....they are contractile.

Fate of Clot:

Lysis or Fibrous tissue Formation (platelet

derived growth factor)

LYSIS OF BLOOD CLOTS BY PLASMIN

Formed blood clot can either become fibrous or dissolve.

•Fibrinolysis
(dissolving) means
Breaking down of
fibrin by naturally
occurring enzyme
plasmin → prevent
intravascular
blocking.

Tissue Plasminogen Activator (TPA) is used to activate plasminogen to dissolve coronary and cerebral clots.

The fibrinolytic system and its regulation by Protein C

ANTICOAGULANTS

USED IN VITRO

Parenteral

Heparin → Combines with antithrombin III and ↑ its effectiveness by 100-1000 fold, Also remove Factors XII, XI, X, and IX (Monitored by PTT time) → CANNOT BE TAKEN ORALLY; WHY?

Oral

❖ Warfarin:
↓ production of Vit K dependent clotting factors (II, VII, IX and X) by liver (Monitored by PT time)
→

IS ALWAYS TAKEN ORALLY

No Ca⁺⁺ → No
Clotting (Needed in many steps)

Citrate ions →
Deionization of Ca⁺⁺
Oxalate ions →
Precipitate the Ca⁺⁺
EDTA → chelates (binds)
calcium ions
Heparin → Binds to AT III

NATURAL INTRAVASCULAR ANTICOAGULANTS

1. Endothelial Surface Factors

- Smoothness of Endothelium
- Glycocalyx Layers
- ❖ Thrombomodulin Protein binds to thrombin → Activates Protein C (with ProtS) → inactivates factors V & VIII and inactivates an inhibitor of tPA → increasing the formation of plasmin.

2. Antithrombin action of Fibrin and Antithrombin III

- 85-90 % Thrombin binds with Fibrin
- 10-15 % Thrombin binds with Antithrombin III

Antithrombin III is a circulating protease blocking clot factors

NATURAL INTRAVASCULAR ANTICOAGULANTS

3. Heparin

- vely charged conjugated polysaccharide
 - Increase the effectiveness of Antithrombin III
 - Produced by
 - Mast cells
 - ❖ Basophil cells
- Most widely used anticoagulant clinically e.g. in stroke

4. Alpha₂ – Macrogobulin

Synthesized mainly in liver and acts as a binding agent for several coagulation factors and inhibits thrombin.

BLEEDING & CLOTTING DISORDERS

- A. Hemophilia
- в. Thrombocytopenia
- c. Liver diseases & Vitamin-K deficiency

HEMOPHILIA

- Genetic disorders
- Hem A & B are inherited in X linked recessive pattern
- Occurs exclusively in males Females are carriers
- Hem C is autosomal recessive
- VWD autosomal dominant

HEMOPHILIA A

- Classic Hemophilia
- ♦ 85 % cases
- Def. Of factor VIII
- **HEMOPHILIA B** (Christmas disease)
 - * 15 % cases
 - * Def. Of factor IX
- **HEMOPHILIA C** (Rosenthal syndrome)
 - Def of factor XI (both sexes)
- Small Comp. → Hemophilia A ► ↑PTT
- Large Comp. → Von-Willebrand's disease ► ↑PTT & BT

<u>Clinical Features:</u> Easy bruising, massive bleeding after trauma or operation, hemorrhages in joints

THROMBOCYTOPENIA

- Count < 50,000 ul may cause spontaneous bleeding</p>
- Less than 10,000 ----- Fatal
- *** ETIOLOGY**

Decreased production

- Aplastic anemia
- Leukemia
- Drugs
- Infections (HIV, Measles)

Increased destruction

- *** ITP**
- Drugs
- Infections (HIV)

Clinical Features

- Easy brusability
- Epistaxis
- Gum bleeding
- Hemorrhage after minor trauma
- Petechiae/Ecchymosis

THROMBOCYTOPENIA (cont.)

- Diagnosis
 - PLT count decreased
 - ❖ B.T increased
- Treatment
 - Rx of the underlying cause
 - PLT concentrates
 - Fresh whole blood transfusion
 - Spleenectomy

PSEUDOTHROMBOCYTOPENIA

- Partial clotting of specimen
- EDTA-platelet clumping
- Platelet satellitism around WBCs
- Cold agglutinins
- Giant platelets

BLEEDING DISORDERS

Liver diseases & Vitamin-K deficiency

- e.g. Hepatitis, Cirrhosis
 - Decreased formation of clotting factors
 - Increased clotting time
- Vitamin K dependent factors
 - Factors....II, VII, IX & X

BLEEDING DISORDERS

A. Vitamin-K

- Fat soluble vitamin
- Required by liver for formation 4 clotting factors

Factors: II, VII, XI and X

Sources

- Diet
- Synthesized in the intestinal tract by bacteria

Deficiency

- Malabsorption syndromes
- Biliary obstruction
- Broad spectrum antibiotics
- Dietary def (in Neonates)
- ❖ Rx.: Treat the underlying cause → Vit K injections

2) SCREENING TEST

Test	Mechanism Tested	Normal Value	Disorder
Bleeding time (BT)	Hemostasis, capillary & platelet function	3-7 min beyond neonate	Thrombocytopenia , von Willebrand disease
Platelet count	Platelet number	150 000 - 450 000 / mm^3	Thrombocytopenia
Prothrombin time (PT)	Extrinsic & common pathway	< 12 sec beyond neonate; 12-18 sec in term neonate	Defect in Vit K- dependent factor, liver disease, DIC
Activated partial thromboplastin time (APTT)	Intrinsic & common pathway	25-40 sec beyond neonate; 70 sec in term neonate	Hemophilia, von Willebrand disease, DIC

Haemostasis tests in hereditary coagulation disorders

	Haemophilia A	Haemophilia B	VW disease
Bleeding time	Normal	Normal	Prolonged
Prothrombin time	Normal	Normal	Normal
APTT	Prolonged	Prolonged	Prolonged
Factor VIII	Low	Normal	Low or normal
Factor IX	Normal	Low	Normal
VWF	Normal	Normal	Low