

Role of salivary glands and stomach in digestion

Color Index:

- Main Topic
 - Drs' notes

Extra info

- Main content
- Important

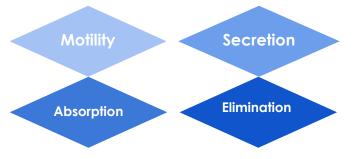
 \bigcirc Understand the principle and importance of digestion of dietary foodstuffs

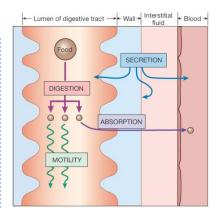
Understand the role of salivary glands in digestion

 \sim

Understand the role of stomach in digestion

And.....

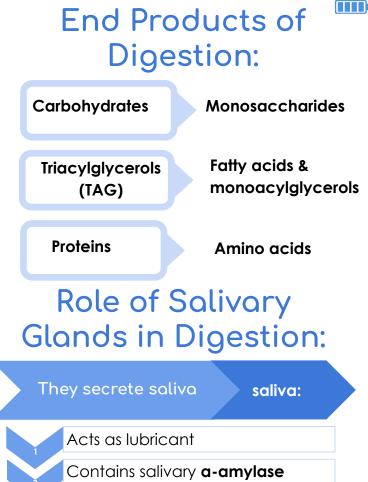


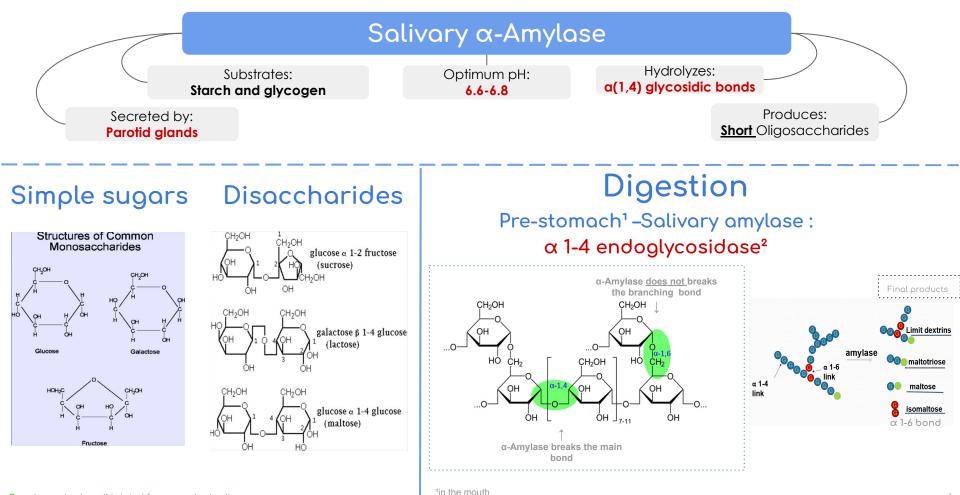

background

Most of dietary foodstuffs are ingested in the form that cannot be readily absorbed from the digestive tract

Digestion:The breakdown of the naturally occurring foodstuffs into smaller, easily absorbable forms.

Processes of the digestive system

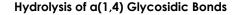



Digestion:

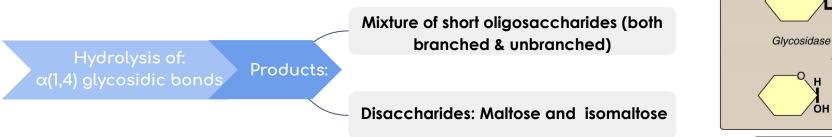
Mechanical effects: e.g., mastication

Enzymatic effects: Digestive enzymes (Hydrolases)

Contains lingual lipase

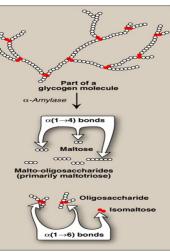


Dr. note: no structures this is just for your understanding

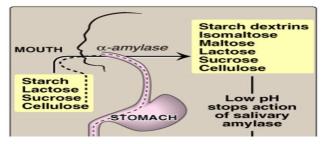

²Its called (endo) because it only breaks the middle bonds not the peripheral ones

Effect of *α*-Amylase on Glycogen

ŌН


- Its digestive action on the polysaccharides is of little significance because of → the short time during which the enzyme can act on the food in the mouth
- Salivary amylase is inactivated by the acidity of stomach (The enzyme is → inactivated at pH 4.0 or less)
- Salivary a-amylase does not hydrolyze: a(1,6) glycosidic bonds (The branch → points of starch and glycogen)
- Salivary a-amylase cannot act on: →

Salivary a-amylase does not hydrolyze:


 $\beta(1,4)$ glycosidic bonds of cellulose disaccharides

→

Digestion of Carbohydrates in the Mouth

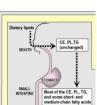
Role of Stomach in Digestion

No further digestion of carbohydrates Lipid digestion begins by lingual and gastric lipases Protein digestion begins by pepsin and rennin

Lingual Lipase

Produces fatty acids and monoacylglycerols

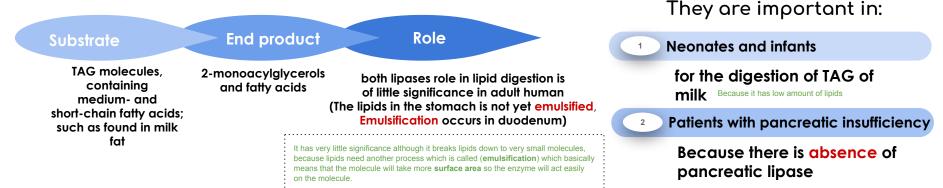
Acts in the stomach for the digestion of TAG

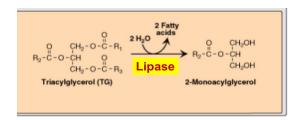

Its role is of little significance in adult humans

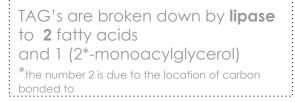
Digestion of Lipids in Stomach

VS

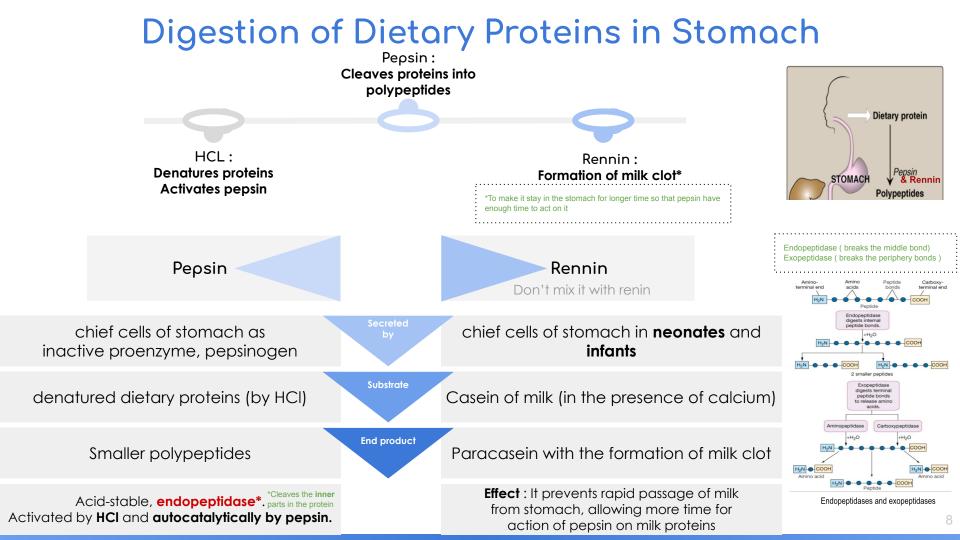
In adults


- no significant effects because of lack of emulsification that occurs in duodenum


In neonates and infants


 digestion of milk TAG and production of short- and medium-chain fatty acids

Lingual and Gastric Lipases (Acid-Stable Lipases)


(Acid-Stable Lipases)

Target substrate for acid-stable lipases is TAG containing:

O O R1 - C - O and R3 - C - O as short- or medium-chain fatty acids

Take Home Messages

Digestion involves both mechanical and enzymatic processes

Digestion makes dietary foodstuffs readily absorbable by the digestive tract

Salivary a-amylase is of limited, but initial effect on digestion of starch and glycogen in the mouth

Salivary a-amylase converts starch and glycogen into short, branched oligosaccharides

GUESSWHO'SLOOKINGAT

MEMES INSTEAD OF WORKINGP

Limited digestion of TAG begins in the stomach by both lingual and gastric lipases producing 2-monoacylglycerols and fatty acids

Digestion of proteins begins in the stomach by pepsin producing smaller polypeptides

In neonates and infants, digestion of milk occurs in stomach by: Acid-stable lipases for digestion of milk fat Rennin and pepsin for digestion of milk proteins

Summary 🔊

	Secreted by	Substrate	Action	Produces	РН	Notes
Salivary α- Amylase	Parotid glands	Starch and glycogen	Hydrolyzes of a(1,4) glycosidic bonds	 Short oligosaccharides (brached, unbranched) Disaccharides (Maltose, isomaltose) 	6.6 – 6.8 (inactivated at pH 4.0 or less)	 Can't act on: α(1,6) glycosidic bonds β(1,4) glycosidic bonds of cellulose disaccharides
Lipase	Lingual from dorsal surface of the tongue	TAG containing medium- and short-chain fatty acid	Acts in the stomach for the digestion of TAG	 2-monoacylglycerols fatty acids 	Acid-stable	 important in neonates and infants for digestion TAG of milk important in patients with pancreatic insufficiency In adults, no significant effects because of lack of emulsification that occurs in duodenum
Pepsin	chief cells of stomach	denatured dietary proteins (by HCl)		Smaller polypeptides	Acid-stable	Secreted As inactive proenzyme pepsinogen, Activated by HCI and another pepsin
Rennin	chief cells of stomach in neonates and infants	Casein of milk (in the presence of Ca)	prevents rapid passage of milk from stomach, allowing more time for action of pepsin on milk proteins	 Paracasein milk clot 	-	-

Special thanks to Dimah Alarifi #med437 🧡

Quiz

MCQs :

Q1: which of the following does a Amylase hydrolyse?

A) a(1,6) Glycosidic bondC) a(1,4) Glycosidic Bond

- A) a(1,6) Glycosidic bond B) $\beta(1,4)$ glycosidic bonds of cellulose
 - D) Disaccharides

<u>Q2:</u> which of the following Produces fatty acids and monoacylglycerols? A) salivary Amylase B) lingual lipase C) pepsin D) rennin

<u>Q3:</u> which of the following is not produced by Hydrolysis of a(1,4) glycosidic bond?

A) glucose B) maltose C) isomaltose D) short oligosaccharides

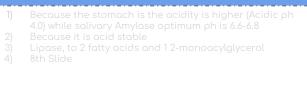
Q4: why lipases are of little significance in lipid digestion in adults?A) Emulsification occurs in duodenumB) lipids are more complex in adultsC) changes in pHD) none

<u>Q5:</u> Rennin acts on casein in the presence of A) Phosphate B) Calcium C) sodium D) potassium

<u>Q6:</u> What is the most important enzyme for milk digestion in neonates? A) Colipase B) Phospholipase A2 C) Gastric lipase D) Amylase

SAQs

<u>Q1:</u> why is the salivary Amylase is not active in the stomach? <u>Q2:</u> why pepsin isn't denatured by HCI like most of the proteins?


Q3: TAG's are broken down by.... to...

<u>Q4:</u> compare between rennin and pepsin regarding their secretion, substrate and end product

MCQs Answer key:

) C 2) B 3) A 4) A 5) B 6) (

SAQs Answer key:

Team members

Girls Team:

- Ajeed Al-Rashoud
- Alwateen Albalawi
- Amira AlDakhilallah
- Arwa Al Emam
- Deema Almaziad
- Ghaliah Alnufaei
- Haifa Alwaily
- Leena Alnassar
- Lama Aldakhil
- Lamiss Alzahrani
- Nouf Alhumaidhi
- Noura Alturki
- Sarah Alkhalife
- 📘 Shahd Alsalamah
- Taif Alotaibi

Team Leaders

Lina Alosaimi

Boys Team:

- Abdulrahman Bedaiwi
- Alkassem Binobaid
- Khayyal Alderaan
- Mashal Abaalkhail
- Naif Alsolais
- Omar Alyabis
- Omar Saeed
- Omar Odeh
- Rayyan Almousa

Mohannad Algarni

• Yazen Bajeaifer

★ There is no elevator to success, you have to take the stairs ♀

We hear you