

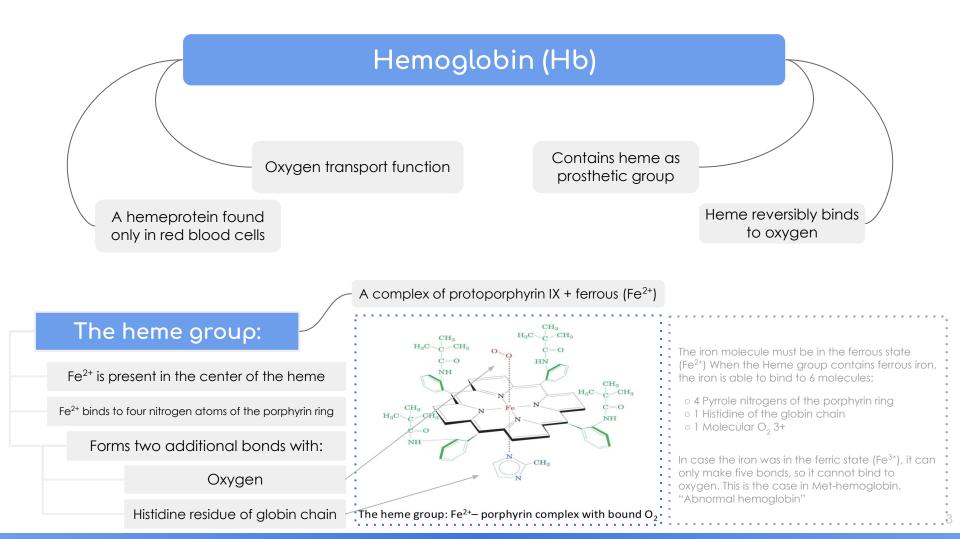
Structure & Function of Hemoglobin

Color Index:

- Main Topic
 - Drs' notes

Extra info

- Main content
- Important



💣 Objectives:

 \bigcirc The structure and function of hemoglobin.

 \bigcirc The factors affecting oxygen binding to hemoglobin.

 \bigcirc Examples of normal and abnormal hemoglobin structures.

Types of Hb

3-Sulf Hb

Normal

Abnormal:

Form	Chain composition	Fraction of total hemoglobin
HbA	$a_2 \beta_2$	90%
HbF	$a_2\gamma_2(\text{Gamma})$	< 2%
HbA ₂	$a_2\delta_2^{}(\text{Delta})$	2% - 5%
HbA _{1c}	$a_2^2\beta_2^2$ -glucose	3% - 9%

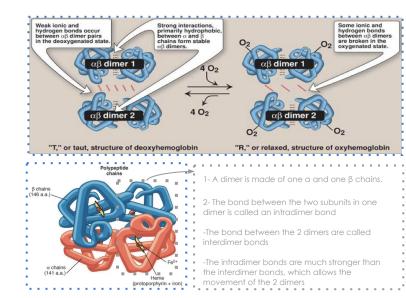
Unable to transport O² due to abnormal structure

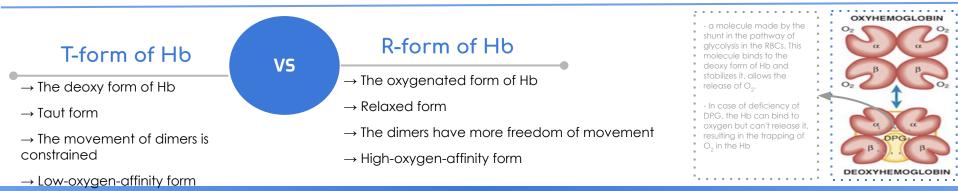
1- Carboxy Hb
 2- Met Hb
 CO replaces O₂ and binds 220X tighter than O₂ (in smokers)
 Contains oxidized Fe³⁺ (~2%) that cannot carry O₂

Forms due to high sulfur levels in blood (irreversible reaction)

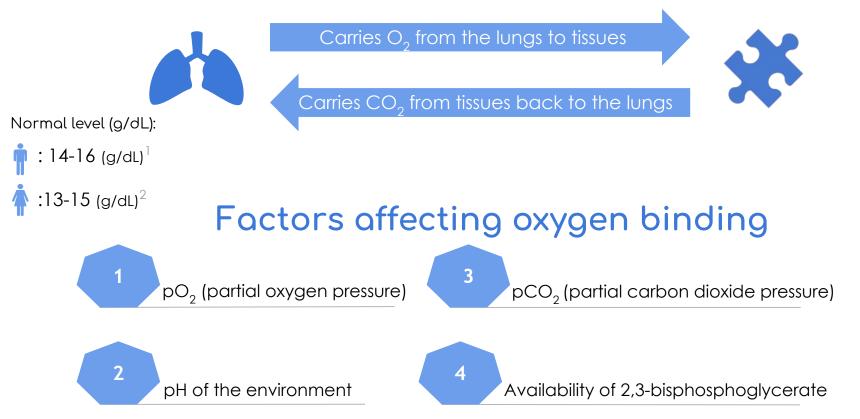
Hemoglobin A (HbA)

Major Hb in adults


Composed of four polypeptide chains: \Box Two a and two β chains


Contains two dimers of aß subunits¹

Held together by non-covalent interactions²


Each chain is a subunit with a heme group in the center that carries oxygen

A Hb molecule contains 4 heme groups and carries 4 molecules of O₂

Hemoglobin function

1- in smokers the Hemoglobin level could be physiologically higher due to adaptation mechanisms. 2- the decreased level in female due to the menstrual period

Oxygen Dissociation Curve (ODC)

- The curve is sigmoidal¹
- Indicates cooperation of subunits in O₂ binding
- Binding of O₂ to one heme group increases O₂ affinity of others

50

Heme-heme interaction²

• Indicates affinity of Hb to O₂

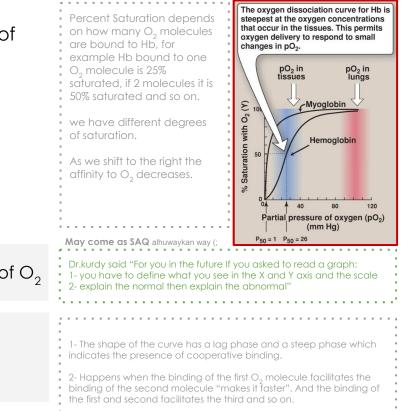
- P_{50} (mmHg): the pressure at which Hb is 50% saturated with O_2
- The affinity:

slow unloading of O

Lung pO₂

Tissue ρO_{2}

High


fast unloading of O_{2}

100 mmHb saturation 100%

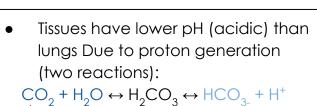
Low

40 mmHb saturation reduces

Hence O₂ is delivered to tissues

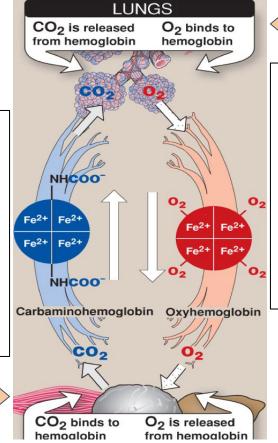
The Bohr effect

- LUNGS Decrease in pH results in decreased CO₂ is released O₂ binds to oxygen affinity of hemoglobin and, from hemoglobin hemoglobin therefore, a shift to the right in the oxygen dissociation curve. pH = 7.6100 Saturation with O₂ (Y) pH = 7.2NHCOO At lower pH, a 02 0, Fe²⁺ Fe²⁺ greater pO₂ is Fe²⁺ Fe²⁺ 50 Fe²⁺ Fe²⁺ required to Fe²⁺ Fe²⁺ achieve any 0. NHCOO given oxygen saturation. Carbaminohemoglobin Oxyhemoglobin % 120 40 80 Partial pressure of oxygen (pO₂) (mm Hg) CO₂ binds to O₂ is released hemoglobin from hemoglobin
- It is the shift of the ODC "oxygen dissociation curve" to the right in response to an increase in pCO_{2} or a decrease in pH.
- It describes the Effect of ph and pCO₂ on:


1. Oxygenation of Hb in the lungs.

2. Deoxygenation in tissues.

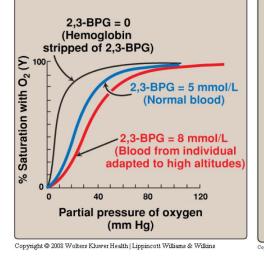
- The result of Bohr effect is unloading O₂ inside the tissues and taking CO₂ outside.
- Also BPG has the same result to unload O_2 inside the tissues.



The Bohr effect

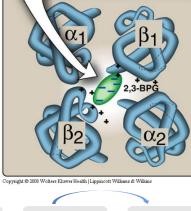
- Protons reduce O₂ affinity of Hb Causing easier O₂ release into the tissues.
- The free Hb binds to two protons.

In the tissues


In the lungs

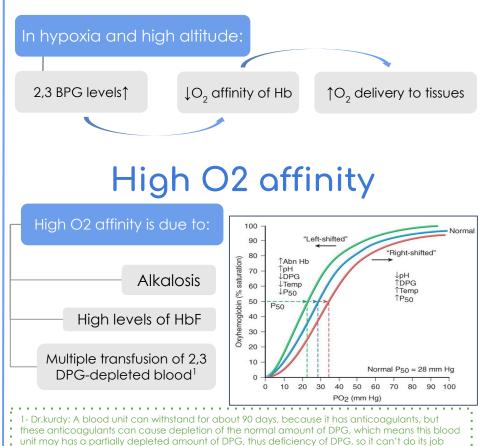
- Protons are released and react with HCO3- to form CO_2 gas $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow HCO_{3-} + H_{\leftarrow}^+$
- The proton-poor Hb now (in the lungs) has greater affinity for O₂.
- The Bohr effect removes insoluble CO₂ from bloodstream and Produces soluble bicarbonate.

Availability of 2,3 bisphosphoglycerate (BPG/DPG)


In the tissues	BPG Binds to deoxy-hb and stabilizes the T-form.
In the lungs	When oxygen binds to Hb, BPG is released.

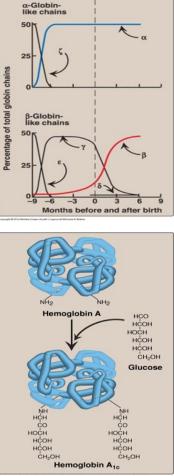
↑RBC number

At high altitude:


A single molecule of 2,3-BPG binds to a positively charged cavity formed by the β -chains of deoxyhemoglobin.

1Hb conc.

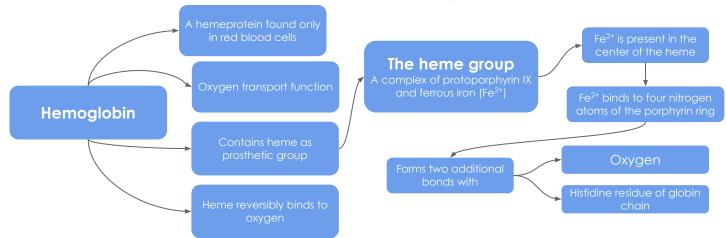
12.3 BPG


High altitude and O₂ affinity

and it needs time to compensate that loss.

Other hemoglobin forms

Types	HbF	HbA ₂	HbA _{1c}
Structure (All Tetramer)	two a and two (gamma) γ chains	two a and two (delta) δ globin chains	Two a and two β -Glucose
Found	Major hemoglobin found in the fetus and newborn.	Appears shortly before birth.	high in patients with diabetes mellitus.
Deference	 Higher affinity for O₂ than HbA Transfers O₂ from maternal to fetal circulation across placenta 	Constitutes ~2% of total Hb	 it's HbA undergoes non-enzymatic glycosylation Glycosylation depends on plasma glucose levels



Time of birth

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

11

Summary

Affinity:		High O2 affinity:	Low O2affinity	
Shift:		Left shift	Right shift	
P50:		Low	High	
	РН	High pH (alkalosis – low pCO2 – Low H+)	Low pH (acidity – high PCO2 – High H+)	
Factors:	DPG	Low DPG: Multiple transfusion of 2,3 DPG-depleted blood.	High DPG	
	Temp.	Low temperature	High temperature	
		Abnormal Hb (e.g High levels of Hb F)	-	

Quiz

SAQs

<u>Q1:</u> In ODC what happen if the curve shift to the lift? Q2: The bond between two dimers are broken in which state? <u>Q3:</u> What happen to your blood at high altitude? <u>Q4:</u> What are the factors affecting O_2

binding?

SAQs Answer key:

MCQs Answer key:

 \star

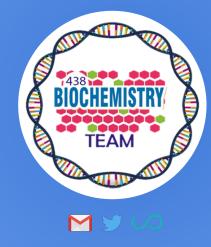
 \star

Team members

Girls Team:

- Ajeed Al-Rashoud
- Alwateen Albalawi
- Amira AlDakhilallah
- Arwa Al Emam
- Deema Almaziad
- Ghaliah Alnufaei
- Haifa Alwaily
- Leena Alnassar
- Lama Aldakhil
- Lamiss Alzahrani
- Nouf Alhumaidhi
- Noura Alturki
- Sarah Alkhalife
- Shahd Alsalamah
- 🧪 Taif Alotaibi

Boys Team:


- Abdulrahman Bedaiwi
- Alkassem Binobaid
- Khayyal Alderaan
- Mashal Abaalkhail
 - 🚶 Naif Alsolais
 - Omar Alyabis
- Omar Saeed
- Omar Odeh
- Rayyan Almousa
- Yazen Bajeaifer

<u>Very secre</u> <u>lecture</u> reviewer

Team Leaders

Lina Alosaimi Mohannad Alqarni

Don't study because you need to, study because knowledge is power and they can never take it away from you.

We hear you