
Plasma Proteins

Drs' notes

Extra info

•

•

Color Index:

- Main Topic
- Main content
- Important

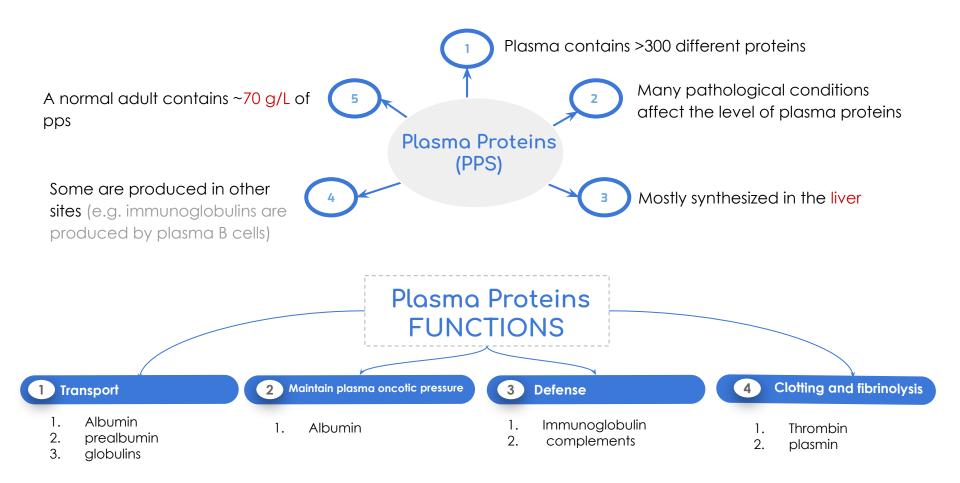
Ø Objectives:

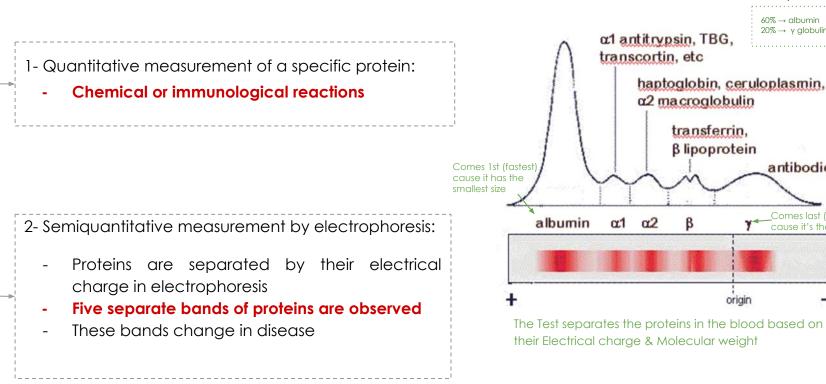
 \bigcirc Identify types and various functions of plasma proteins.

 \bigcirc Discuss the role of plasma proteins in the diagnosis of diseases and conditions.

Interpret the normal and abnormal electrophoretic patterns of plasma proteins.

 \bigcirc Identify the role positive and negative acute phase proteins in various diseases.


Q Overview:


 \swarrow Functions and characteristics of plasma proteins

 \swarrow Measurement of plasma proteins and diagnosis of diseases

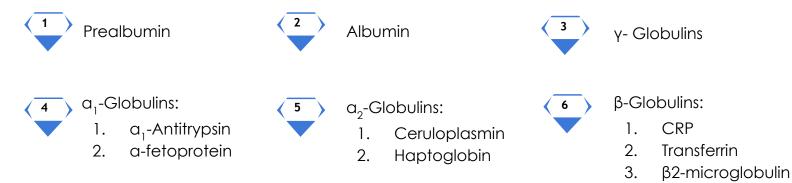
 \checkmark Electrophoretic patterns of plasma proteins

 \bigwedge Acute phase proteins

Normal Pattern of Plasma Protein Electrophoresis

60% → albumin $20\% \rightarrow \gamma$ globulin

antibodies


origin

Comes last (slowlest)

cause it's the laraest

Types of Plasma Proteins

Prealbumin (Transthyretin):

Information	Function	Lowered levels in:	
 Migrates faster than albumin in electrophoresis Separated by immunoelectrophoresis Short half-life (2 days) 	A transport protein for: 1- Thyroid hormone 2- Retinol (vitamin A)	 liver disease, nephrotic syndrome, acute phase inflammatory response malnutrition 	
It is NOT an albumin precursor, it's a completely different protein that doesn't show bands in electrophoresis because it's small			

Albumin

1- Most abundant plasma protein (~40 g/L) in normal adult.

2- Synthesized in the liver as preproalbumin and secreted as albumin.

3- Half-life in plasma: 20 days

4- Decreases rapidly in injury, infection and surgery.

Functions

1- Maintains oncotic pressure:

-The osmotic pressure exerted by plasma proteins that pulls water into the circulatory system.

-Maintains fluid distribution in and outside cells and plasma volume.

2-80% of plasma oncotic pressure is maintained by albumin.

3- A non-specific carrier of: hormones, calcium, free fatty acids, drugs, etc.

4- Tissue cells can take up albumin by pinocytosis where it is hydrolyzed to amino acids.

5- Useful in treatment of liver diseases, hemorrhage,

shock and burns.

Abnormalities

1-<u>Hypo</u>albuminemia:

Causes:

1- Decreased albumin synthesis (liver cirrhosis, malnutrition)

2- Increased losses of albumin:

-Increased catabolism in infections

-Excessive excretion by the kidneys

(nephrotic syndrome)

-Excessive loss in bowel (bleeding)

-Severe burns (plasma loss in the absence of skin barrier

Effects:

1- Edema due to low oncotic pressure

-Albumin level drops in liver disease causing low oncotic pressure

-Fluid moves into the interstitial spaces causing edema

2- Reduced transport of drugs and other substances in plasma

3- Reduced protein-bound calcium

- Total plasma calcium level drops

- Ionized calcium level may remain normal

2-<u>Hyper</u>albuminemia:

1- No clinical conditions are known that cause the liver to produce large amounts of albumin.

2- The only cause of hyperalbuminemia is dehydration.

a₁-Antitrypsin

Information

- Synthesized by the liver and 1. macrophages.
- 2. Over 30 types are known.
- 3. The most common is **M** type.

Function

- 1- An acute-phase protein that inhibits proteases.
- 2- Proteases are produced endogenously and from leukocytes and bacteria.
 - Digestive enzymes (trypsin, chymotrypsin)
 - Other proteases (elastase, thrombin)

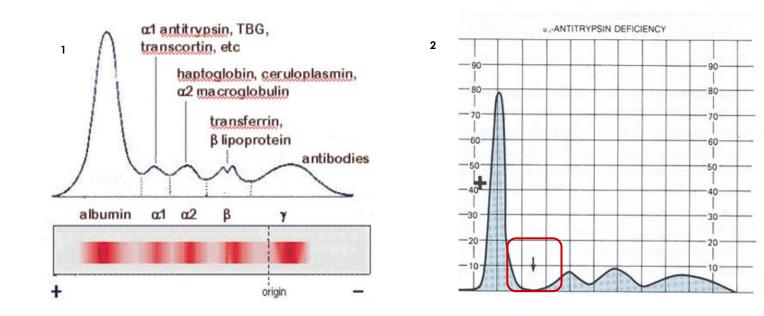
3-Infection leads to protease release from bacteria and from leukocytes.

Genetic definciny

1-Synthesis of the defective a,-Antitrypsin occurs in the liver but it cannot secrete the protein.

2- a₁-Antitrypsin accumulates in hepatocytes and is deficient in plasma.

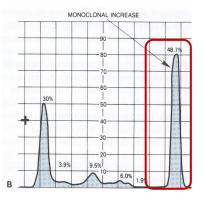
Laboratory Diagnosis:


- Lack of a_1 -globulin band in protein electrophoresis. Quantitative measurement of a_1 -Antitrypsin by: 1.
- 2.

Radial immunodiffusion, isoelectric focusing or nephelometry

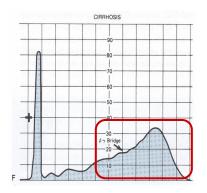
Clinical Consequences of a₁-Antitrypsin Deficiency:

- Neonatal jaundice with evidence of cholestasis 1.
- 2. Childhood liver cirrhosis
- 3 Pulmonary emphysema in young adults

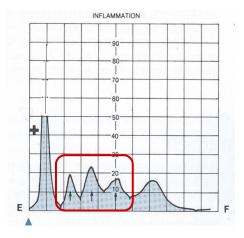

- Picture 1 shows a normal Serum Electrophoresis Pattern
- Pictures 2 shows a₁-Antitrypsin\a₁-globulin is gone. which means the patient has no a₁-Antitrypsin

Plasma protein	Information/Function	Abnormality	
a-Fetoprotein (AFP)	 -Synthesized in the developing embryo and fetus by the parenchymal cells of the liver. -AFP levels decrease gradually during intra-uterine life and reach adult levels at birth. - Function is unknown but it may protect fetus from immunologic attack by the mother & no known physiological function in adult. 	 Elevated maternal AFP levels are associated with: Neural tube defect, anencephaly Decreased maternal AFP levels areassociated with: Increased risk of Down's syndrome AFP is a tumor marker for: Hepatoma and testicular cancer. 	
Ceruloplasmin	-Synthesized by the liver & contains >90% of serum copper . -An oxidoreductase that inactivates ROS causing tissue damage in acute phase response. -Important for iron absorption from the intestine.	-Wilson's disease: Due to low plasma levels of ceruloplasmin, copper is accumulated in the liver and brain.	
Haptoglobin	 -Synthesized by the liver & binds to free hemoglobin to form complexes that are metabolized in the reticuloendothelial system (RES). -□Limits iron loss by preventing Hb loss from kidneys (recycling) 	-Plasma level decreases during hemolysis .	
Transferrin	 -A major iron-transport protein in plasma □30% saturated with iron & Iron deficiency results in increased hepatic synthesis. □-A negative acute phase protein¹. 	-Plasma level drops in: Malnutrition, liver disease, inflammation, malignancy.	
β2-Microglobulin	-A component of human leukocyte antigen (HLA) & present on the surface of lymphocytes and most nucleated cells. -Filtered by the renal glomeruli due to its small size but most (>99%) is reabsorbed.	-Elevated serum levels are found in: severe inflammation (infections, SLE, and rheumatoid arthritis) -May be a tumor marker for: Leukemia, lymphomas, multiple myeloma.	
C-Reactive Protein (CRP)	-A Positive acute-phase protein synthesized by the liver & Important for phagocytosis .	 High plasma levels are found in many inflammatory conditions such as rheumatoid arthritis. A marker for ischemic heart disease. it's ultra sensitive CRP 	

Hypergammaglobulinemia



Monoclonal Hypergammaglobulinemia


- Proliferation of a **single** B-cell clone produces a single type of Ig .
- Appears as a separate dense band (paraprotein or **M band**) in electrophoresis.
- Paraproteins are characteristic of malignant B-cell proliferation.
- Clinical condition: multiple myeloma.

- Stimulation of **many** clones of B cells produce a wide range of antibodies.
- **γ-globulin band** appears large in electophoresis.
- Clinical conditions: acute and chronic infections, autoimmune diseases, chronic liver diseases.

- Positive acute phase proteins

-Plasma protein levels increase in: Infection, inflammation, malignancy, trauma, surgery.

-These proteins are called acute phase reactants & synthesized due to body's response to injury.

-Examples: a1-Antitypsin, haptoglobin, ceruloplasmin, fibrinogen, C-reactive protein.

Mediators that cause these proteins to increase after injury are:

 \Box Cytokines (IL-1, IL-6), tumor necrosis factors a and β , interferons, platelet activating factor.

Mediators functions:

- 1. Bind to polysaccharides in bacterial walls.
- 2. Activate complement system.
- 3. Stimulate phagocytosis.

Negative acute phase proteins

-These are proteins which decrease in inflammation: Albumin, prealbumin, transferrin

-They're mediated by inflammatory response via cytokines and hormones. -Reason for the decrease in synthesis of these proteins is: to save amino acids for positive acute phase proteins. Dr's note: Acute phase inflammatory response is the first response that you will have within 24 hours of an acute insult/infection. Your body will try to fight the insult by synthesizing certain proteins in increased amounts (positive proteins), while decreasing the amounts of other proteins (negative proteins).

Take Home Messages

 \longrightarrow

Plasma proteins play essential roles in a number of cellular functions.

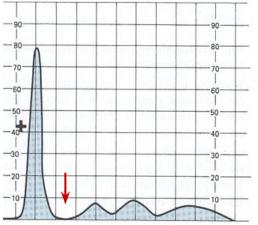
They possess diagnostic significance in identifying various pathological conditions.

Summary

Plasma proteins				
Functions	Abnormal levels of proteins	Proteins used as markers		
 1.transport: (albumin/prealbumin/glob ulin) 2.maintain plasma oncotic pressure: (albumin) 3.Defense: (Immunoglobulins and complement) 4.Clotting and fibrinolysis: (Thrombin and plasmin) 	 Prealbumin: decreased level in liver disease, nephrotic syndrome, acute phase inflammatory response, malnutrition. Albumin: Decreased in liver cirrhosis, malnutrition, Increased losses of albumin (such as severe burn/bleeding). While it's increased in dehydration. a 1-Antitrypsin: decreased levels lead to neonatal jaundice / childhood liver cirrhosis / pulmonary emphysema. a -fetoprotein: increased level associates with neural tube defect and anencephaly while decreased level associates with Down syndrome. Ceruloplasmin: decreased level in Wilson's disease. Haptoglobin: decreased during hemolysis. CRP: increased in inflammatory conditions such as rheumatoid arthritis Transferrin: decreased levels / overproduction in inflammatory diseases. β2-microglobulin: increased level result in hypergammaglobulinemia. 	 AFP is a tumor marker for Hepatoma and testicular cancer. β2-microglobulin may be a tumor marker for Leukemia, lymphomas, multiple myeloma. CRP is a marker for ischemic heart disease. 		

Quiz

MCQs :


Q1: Which of the following is a a) C-Reactive protein	the second s	c) β2–Microglobulin	d) Haptoglobin			
Q2: Which of the following is a a) Transferrin	b) Haptoglobin	protein: c) C-Reactive protein	d) Fibrinogen			
Q3: Decreased maternal AFP a) Lymphoma	is associated with: b) Anencephaly	c) Wilson's disease	d) Down syndrome			
Q4: Which of the following is a a) Adulthood liver cirrhosis	clinical consequences of b) Pulmonary emphyse		d) ischemic heart disease			
Q5: Which of the following car a) Increase kidney secretion		: c) Dehydration	d) Increase catabolism in infection			
<u>Q6:</u> Which of the following is true regarding CRP? a) Important for phagocytosis b) Synthesized by kidney c) Marker for heart failure d) All of them						

★ MCQs Answer key:

1) B 2) A 3) D 4) B 5) C 6) A

Quiz

<u>Q1:</u> What kind of measurement does this graph indicates?

<u>Q2:</u> What kind of abnormality does the <u>RED</u> arrow indicates? Explain.

<u>Q3:</u> List <u>TWO</u> clinical consequences of this abnormality.

Q4: List THREE negative acute phase proteins.

<u>Q5:</u> List <u>THREE</u> mediators that cause positive acute phase proteins to increase after injury.

★ SAQs Answer key:

- 1) Semiquantitative measurement by plasma protein electrophoresis.
- 2) Indicate a_1 -antitrypsin deficiency, because there's lack of a_1 -globulin band in the graph.
- 3) Childhood liver cirrhosis Pulmonary emphysema in young adults.
- 4) Albumin, prealbumin, transferrin.
- 5) Cytokines (IL-1, IL-6), tumor necrosis factors a and β , interferons, platelet activating factor.

Team members

Girls Team:

- Ajeed Al-Rashoud
- Alwateen Albalawi
- Amira AlDakhilallah
- Arwa Al Emam
- Deema Almaziad
- Ghaliah Alnufaei
- Haifa Alwaily
- Leena Alnassar
- Lama Aldakhil
- Lamiss Alzahrani
- Nouf Alhumaidhi
- Noura Alturki
- Sarah Alkhalife
- Shahd Alsalamah
- Taif Alotaibi

Team Leaders

Lina Alosaimi

Boys Team:

- Abdulrahman Bedaiwi
- Alkassem Binobaid
- Khayyal Alderaan
- Mashal Abaalkhail
- Naif Alsolais
- Omar Alyabis
- Omar Saeed
- Omar Odeh
- Rayyan Almousa
- Yazen Bajeaifer

Mohannad Alqarni

★ You Will Never Have This Day Again, So Make It Count

We hear you