

Hematology

Acute leukemia

Color index: Red: Important Gray: notes Blue: extra

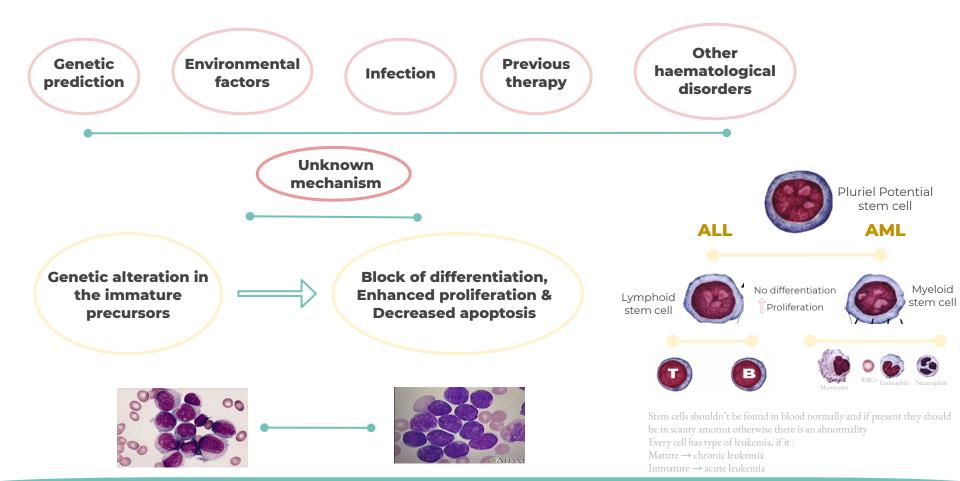
Acute leukemia

Aggressive malignant hematopoietic disorders Accumulation of > 20% blasts in the bone marrow.

Accumulation of abnormal blasts (**Immature** precursors of WBC) in bone marrow and blood leading to:

Organ infiltration (hepatosplenomegaly ,lymphadenopathy)

Bone marrow failure (anemia, neutropenia & thrombocytopenia "low blood platelet count")

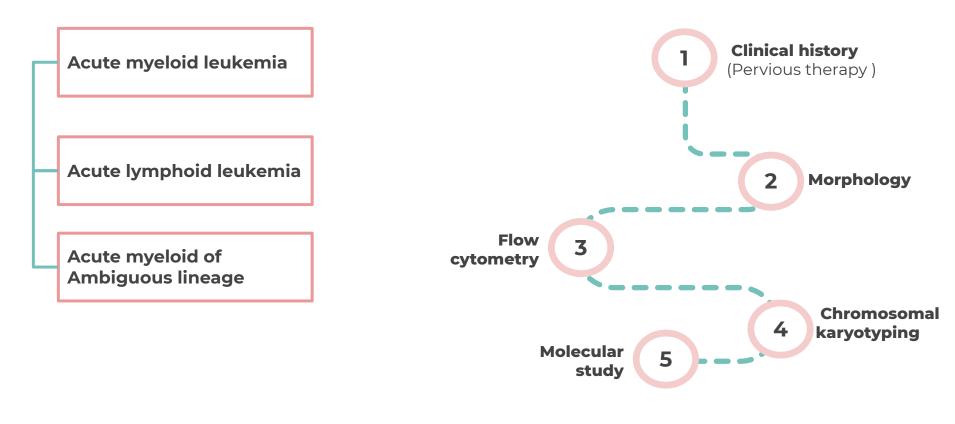

- **Leukemia** = Means "white blood" in greek.
- Classified by FAB "French-American-British" classification systems in 1976 2001 & 2008
- Named by pathologist Virchow in 1845Reclassified by World Health Organization in

epidemiology

- AL represent about 8% of neoplastic disease & cause about 4% of malignancy related deaths !
- **AML** has an incidence of 2 3 per 100 000 per year in children, rising to 15 per 100 000 in adults.
- ALL has an incidence of 30 per million & represent about 76% of childhood leukemia .

-> Pathoma Anemia (fatigue); thrombocytopenia (bleeding); neutropenia (infection)

Pathogenesis



Classification of Acute leukemia

Based on the phenotype of the blasts.

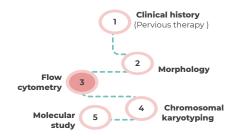
basis of classification

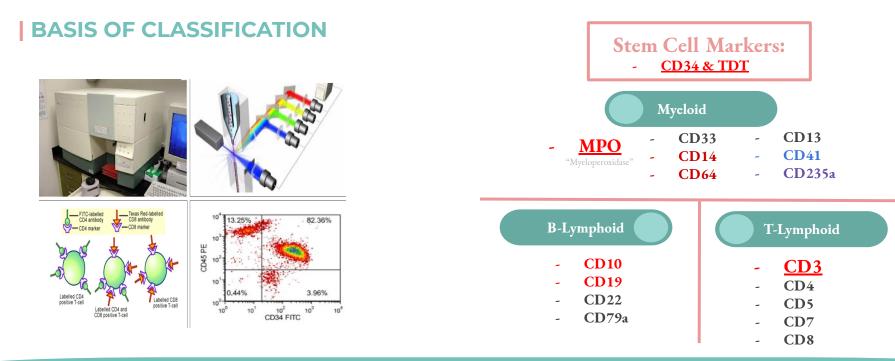
All of those test should done to the patient

Light microscopy

 \rightarrow Blast count : it should be >20% out of the total cells in bone marrow.

 \rightarrow Blast morphology:

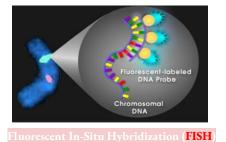

	Myeloblast	Lymphoblast		
Size	Medium/ large	Small/ medium		Myeloblast very malignant cells
Nucleus	Round, oval or irregular	Round		
Nucleolus	Prominent	Not prominent		Lymphoblas
Cytoplasm	Abundant , granular Aur rods is charestristic	Scanty, agranular maybe vacuolated	Constants	There's NO cytoplas


Clinical history 1 (Pervious therapy 2 Morphology Flow 3 cytometry Chromosomal 4 Molecular karyotyping studv

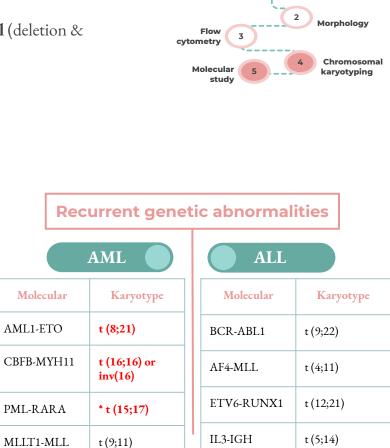
ist

Flow cytometry

 \rightarrow Laser based technology allows for cells counting & detection of their surface & cytoplasmic markers by suspending them in a stream of fluid followed by analysis through electronic system.



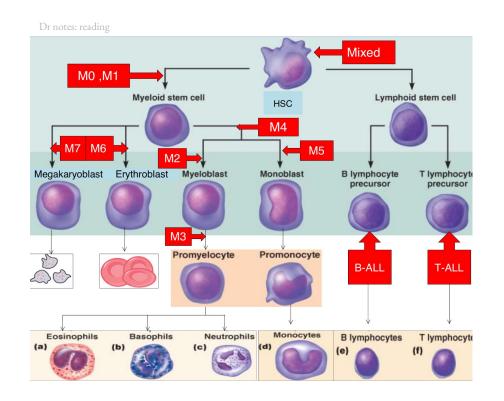
Chromosomal karyotyping


 \rightarrow Set of the chromosomes from one cell during metaphase to study the **numerical** (deletion & trisomy) and **structural** (translation & inversion) abnormality

molecular studies

 \rightarrow Several techniques used to detect and localize the presence or absence of specific DNA sequences on chromosomes

Polymerase Chain Reaction (PCR)

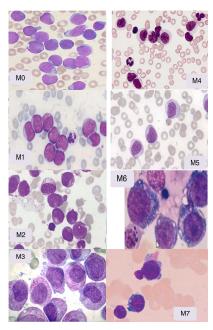

Clinical history (Pervious therapy

* Most serious type of leukemia (M3: Promyelocytic)

Acute myeloid leukemia

 \rightarrow Group of hematopoietic neoplasms caused by proliferation of malignant *myeloid blasts* in bone marrow and blood.

- → The blast \geq 20% or t(8;21) t (16;16) or t(15;17).
- \rightarrow More in <u>Adults</u> (do occur in infants)
- \rightarrow Worse than ALL



AML classification

FAB classification

WHO classification

Subtype	Feature	Genetic in WHO	Notes
M0	Minimal differentiation		
M1	Without maturation		
M2	With maturation	t(8;21)	
M3	Promyelocytic	t(15;17)	DIC
M4	Granulocytic and monocytic	t or inv(16;16)	Gum
M5	Mono Plastic (M5a) Monocytic (M5b)	t(9;11)	hypertrophy
M6	Erythroid		CD235a
M 7	Megakaryocyte		CD41
M8	Basophilic		

 - FAD Classification is based on microscopic features (morphology)
 - In M6 myeloid leukemia (Erythroid leukemia) there will be excessive production of immature RBCs which will die quickly and the patient will present with severe anemia

AML classification

FAB classification

WHO classification

AML with recurrent genetic abnormalities 1- t(8;21) 2- t(16;16) 3- t(15;17) • Prognosis: Good

02

Myelodysplasia related AML

- Blasts $\ge 20\%$
- Significant dysplasia
- Prognosis: poor

Therapy related AML

- Blasts $\ge 20\%$
- Previous chemotherapy "Around 5-7 years"
- Prognosis: poor

04

AML, not otherwise specified (FAB)

- Blasts $\geq 20\%$
- Genetic: N
- No dysplasia
- Prognosis: Standard

Clinical Features of AML

Pancytopenia

 $\begin{array}{ll} \downarrow WBC & \rightarrow \mbox{ Infection } \\ \textbf{WBC} \downarrow \mbox{ in mature cells such } \\ \textbf{Fever} & \textbf{Septic shock } \end{array}$

Acute onset

 $\begin{array}{l} \downarrow Hemoglobin \rightarrow Anemia \\ \textbf{>} Fatigue \qquad \textbf{>} Headache \\ \textbf{>} Pallor \qquad \textbf{>} SOB \end{array}$

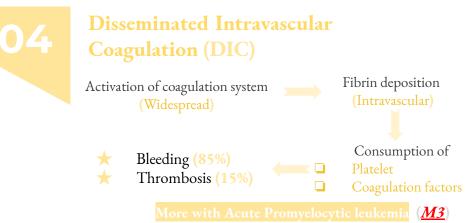
 $\begin{array}{l} \downarrow Platelets \rightarrow Bleeding \\ \textbf{>} Bruises \qquad \textbf{>} Epistaxis \end{array}$

≻Menorrhagia

03

Leucostasis

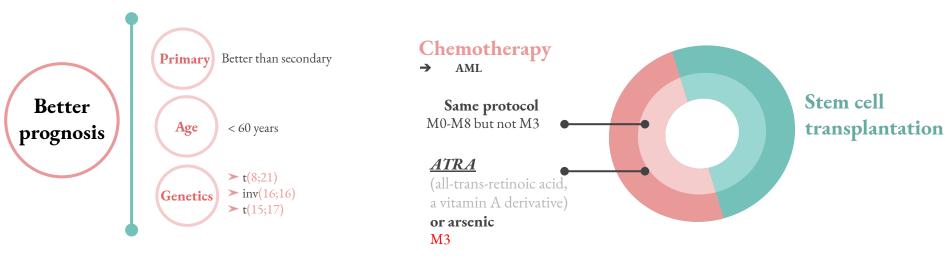
increased blood viscosity

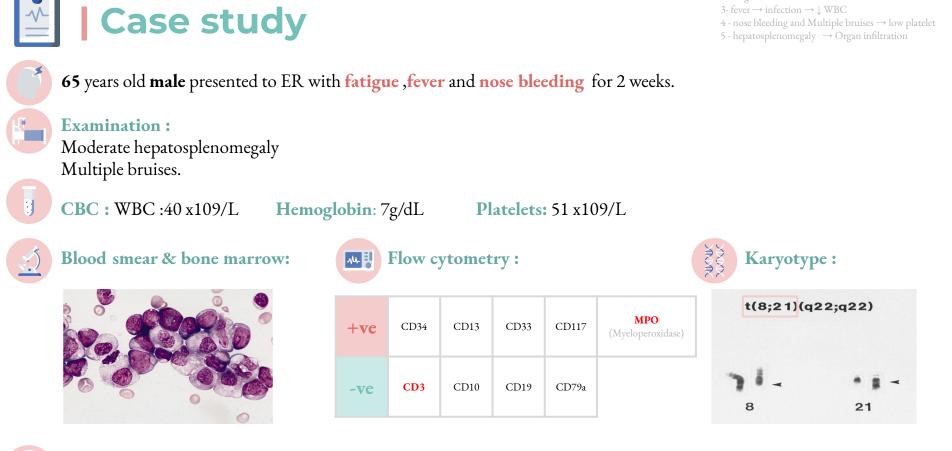

02

Organ infiltration

- Hepatosplenomegally.Lymphadenopathy (rare)
- CNS disease.
- Gum hypertrophy
- Myeloid sarcoma

Gum hypertrophy is a sign that indicates bad prognosis

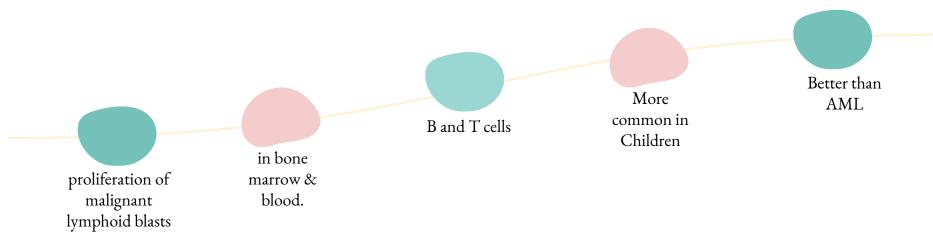



Acute Promyelocytic leukemia (M3) t (15;17) is an emergency condition due to DIC

Prognosis

Treatment

Treatment of M3 type myeloid leukemia (promyelocytic leukemia) is by all trans retinoic acid which corrects the t(15;17) translocation



2- fatigue \rightarrow anemia

3- fever \rightarrow infection $\rightarrow \downarrow$ WBC

Diagnosis: Acute Myeloid Leukemia with maturation (M2) *FAB with t(8;21) *WHO

Acute Lymphoblastic Leukemia (ALL)

Clinical Features of ALL

 $\bigvee WBC \longrightarrow Infection$ > Fever > Septic shock

→ Hemoglobin → Anemia
 → Fatigue → Headache
 → Pallor → SOB

↓ Platelets → Bleeding
>Bruises > Epistaxis > Menorrhagia

infiltration

Hepatosplenomegaly.
 Lymphadenopathy (very common)

• CNS disease.

Testicles involvement

• Mediastinal mass Characteristic for T-ALL

Morphological subtypes (FAB)

Immunophenotypic Subtypes (WHO)

	L1	L2	L3 (Burkitt's)
Morphology	Homogenous	Heterogeneous	Homogenous
Size	Small	Variable	Small
Cytoplasm	Little	More	Vacuolated
Nucleoli	Not Prominent	Prominent	Prominent
Genetics	Variable	Variable	t(8;14) c-myc
			G

Burkitt's lymphoma is the fastest growing tumor

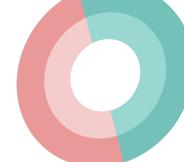
L3 (Burkitt's) :

≻ mature lymphoid neoplasm

> a type of lymphoma <u>**not**</u> Acute lymphoblastic leukaemia

	B cell	T cell
Markers	CD19 CD10 CD79a	CD3
Percentage	80%	20%
Age	Younger	Older
Clinical		 Mediastinal mass CNS relapse
WBC count	Less	Higher
Prognosis	Better	Worse
Genetics	T(9;22) T(4;11) T(12;21)	

Acute Lymphoblastic Leukemia (ALL)


	B-ALL		T-ALL				
Precursor cell	CD34 TDT	CD19	B-ALL	<u>c</u> CD3	CD2	 ≻ Both CD4 & CD8 ≻ None 	T-ALL
Mature cell	Surface Immunoglobulin	CD20 CD79a	Burkitt's	<u>s</u> CD3	CD5 CD7	 CD4 only CD8 only 	T- Cell Lymphoma

PROGNOSIS

	Better	Worse
Age	2-10 yrs	Less or more
Gender	Female	Male
WBC count	Low	High
Cell type	B cell	T cell
B-all phenotype	Common	Others
B-ALL genetics	Hyperdiploidy t(12;21)	Hypodiploidy t(9;22)
CNS involvement	No	Yes

Treatment

Chemotherapy high cure rate

Stem cell transplantation

REMEMBER!

- > Acute leukaemia is a fatal neoplastic condition
- > 20% or more blasts = Acute leukaemia
- > Diagnosis requires special investigations
- > Auer rods = AML
- > AML M3 = DIC & target therapy
- > Gum hypertrophy = mostly M4 or M5,
- Mediastinal = T-ALL
- > Subtypes of AML (M0-M8) + cytogenetic abnormalities
- > Subtypes of ALL (T or B cell)
- > Main lineages markers are MPO, CD19 and CD3
- Stem cell markers are CD34,TDT
- > FAB classification based mainly on morphology
- > WHO classification focused more on genetics

Quiz

1-Gum hypertrophy mostly seen in;

- A. Acute lymphoblastic leukemia
- B. Acute monoblastic leukemia
- C. Chronic leukemia
- D. Burkitt's lymphoma

2-27 years male come to your clinic with fever and bone pain and pale face. On examination CBC shows increased WBCs with 40% blast, microscopic examination show, very malignant cells with granular cytoplasm and Auer rods. What is the translocation in the patient? (*from dr.notes*)

- A. t(9;22)
- B. t(5;14)
- C. t(5;17)
- D. t(8;14)

3- Burkitt's lymphoma cytogenetic abnormality? (*from dr.notes*)

А.	t(8;16)
В.	t(5;18)
C.	t(8;14)
D.	t(8;21)

4- Which one following is associated with worse prognosis in acute leukemia? *(from dr.notes)*

- A. Low WBC count
- B. 6 years female
- C. B cells type
- D. CNS involvements

Key answers: 1-B 2-C 3-C 4-D 5-C 6-B

5- B- ALL genetics in Better prognosis:

А.	t(9;22)
В.	t(5;14)
C.	t(12;21)
D.	t(8;14)

6- DIC associated with:

А.	M1
В.	M3
C.	M5
D.	M4


THANKS

TEAM MEMBERS

TEAM LEADERS

Abdulaziz Alghamdi

° 🛛 Elaf Almusahel

Amirah Alzahrani

- Deema Almaziad
- Jude Alotaibi
- Njoud Almutairi
- Nouf Albraikan
- Noura Almazrou
- Razan Alzohaifi
- 😡 Rema Almutawa
- Renad Alhaqbani
- 🌱 Renad Almutawa
- Taif Alotaibi
- Wejdan Alnufaie

- Abdullah Alghamdi
- Hashem Bassam
- Mashal Abaalkhail
- Moath Aljehani
- Mohammed Alasmari
- Mohammed H.Alshehri
- Mohammed Alkhamees
- Mohammed Alshalan
- Naif Alsolais
- Saud Bin Queid