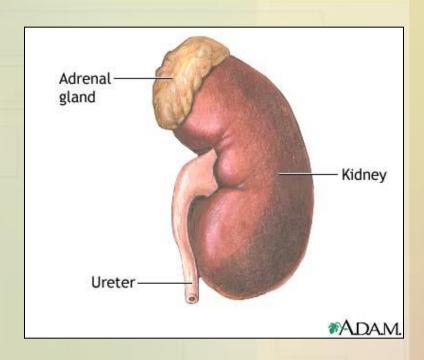
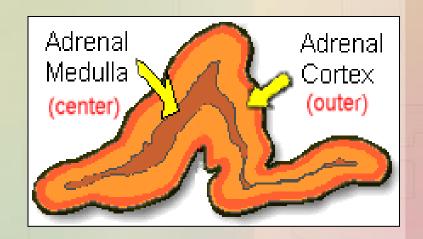
Biochemistry of Addison's Disease

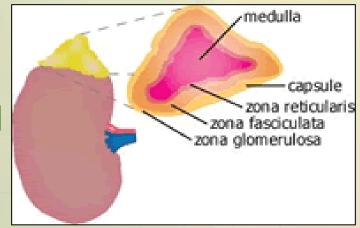

Endocrine Block

Objectives

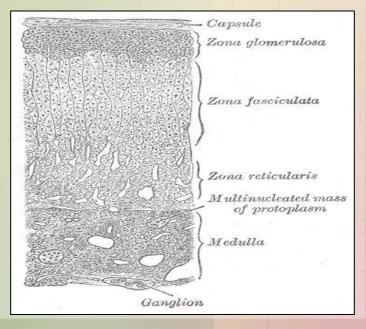
- To identify different causes of primary adrenocortical hypofunction (Addison's disease)
- To identify secondary causes of adreno-cortical hypofunction
- To understand the diagnostic algorithm for adreno-cortical hypofunction
- To understand the interpretation of laboratory tests of adreno-cortical hypofunction


ANATOMICALLY:

 The adrenal gland is situated on the anteriosuperior aspect of the kidney


HISTOLOGICALLY:

 The adrenal gland consists of two distinct tissues of different embryological origin, the outer cortex and inner medulla.


The adrenal cortex comprises three zones based on cell type and function:

➤ Zona Glomerulosa
The outermost zone → aldosterone (the principal mineralocorticoid).

The deeper layers of the cortex:

- **≻Zona** Fasciculata
- → glucocorticoids mainly cortisol (95%)
- >Zona Reticularis
 - → Sex hormones

Steroid Hormone Synthesis Cholesterol (27C) Pregnenolone (21C) 3-β-Hydroxysteroid dehydrogenase **Progesterone (21C)** 17-α-Hydroxylase 17-α-Hydroxyprogesterone (21C) 21-α-Hydroxylase 11-Deoxycorticosterone (21C) **Androstenedione (19C)** 11-Deoxycortisol (21C) **Testosterone (19C)** 11- β -Hydroxylase Corticosterone Estradiol (18C) Aldosterone (21C) Cortisol (21C)

Aldosterone Hormone

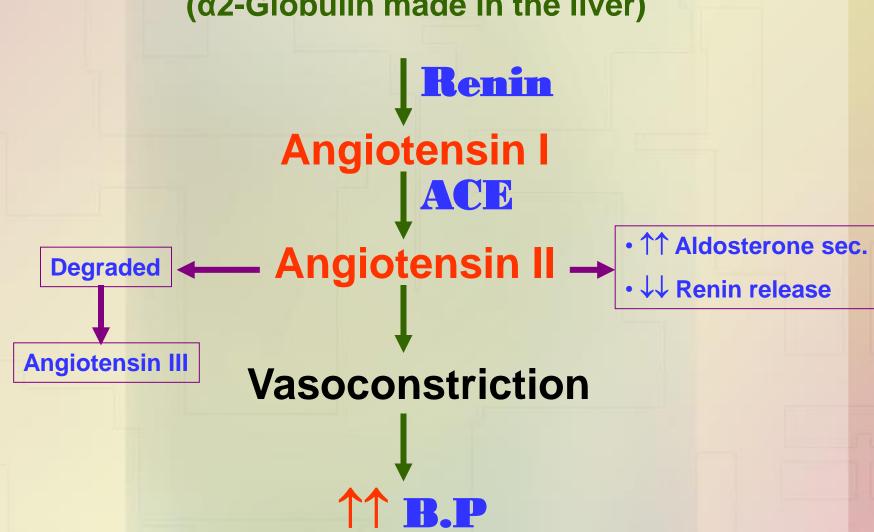
 The principal physiological function of aldosterone is to conserve Na⁺, mainly by facilitating Na⁺ reabsorption and reciprocal K⁺ or H⁺ secretion in the distal renal tubule.

 aldosterone is a major regulator of water and electrolyte balance, as well as blood pressure.

- Aldosterone, by acting on the <u>distal</u> <u>convoluted tubule</u> of kidney, leads to:
- ↑↑ potassium excretion
- ↑↑ sodium and water reabsorption

 Renin-Angiotensin system is the most important regulatory mechanism for aldosterone secretion

The renin - angiotensin system


- It is the <u>most important system</u> controlling aldosterone secretion.
- It is involved in B.P. regulation.

Renin:

- a proteolytic enzyme produced by the juxtaglomerular cells of the afferent renal arteriole.
- Sensitive to B.P. changes through baroreceptors
- released into the circulation in response to :
 - a fall in circulating blood volume.
 - a fall in renal perfusion pressure.
 - loss of Na⁺.

Angiotensinogen

(α2-Globulin made in the liver)

Causes of adrenocortical hypofunction (AC)

A. Primary AC hypofunction (destruction of adrenal gland, Addison's disease):
Autoimmune
Infection, e.g., tuberculosis
Infiltrative lesions, e.g., amylodosis

B. Secondary AC hypofunction:
Pituitary tumors
Vascular lesions
Head trauma
Hypothalmic diseases
latrogenic (steroid therapy, surgery or radiotherapy)

Signs and symptoms of primary adrenal failure (Addison's disease)

The symptoms are precipitated by trauma, infection or surgery:

Lethargy, weakness, nausea & weight loss.

Hypotension especially on standing (postural)

Hyperpigmentation (buccal mucosa, skin creases, scars)

Deficiency of both glucocorticoids and mineralocorticoids

Hypoglycemia, ↓ Na+, ↑ K+ and raised urea

Life threatening and need urgent care.

Hyperpigmentation in Addison's disease

Hyperpigmentation occurs because melanocytestimulating hormone (MSH) and (ACTH) share the same precursor molecule, Propiomelanocortin (POMC).

The anterior pituitary POMC is cleaved into ACTH, γ-MSH, and β-lipotropin.

The subunit ACTH undergoes further cleavage to produce α-MSH, the most important MSH for skin pigmentation.

In secondary adrenocortical insufficiency, skin darkening does not occur.

Investigation of Addison's disease (AD)

- The patient should be hospitalized
- Basal measurement of:
 Serum urea, Na+, K+ & glucose
 Serum cortisol and plasma ACTH
- Definitive diagnosis and confirmatory tests should be done later after crisis.

Investigation of Addison's disease (AD)

Cont'd

- Normal serum cortisol and UFC does not exclude AD.
- Simultaneous measurement of cortisol and ACTH improves the accuracy of diagnosis of primary adrenal failure: Low serum cortisol (<200nmol/L) and High plasma ACTH (>200 ng/L)

Confirmatory Tests

1. Short tetracosactrin (Synacthen) test (Short ACTH stimulation test)

- Measure basal S. cortisol
- Stimulate with I.M. synthetic ACTH (0.25 mg)
- Measure S. cortisol 30 min after I/M injection
- Normal: ↑ of S. cortisol to >500 nmol/L
- Failure of S. cortisol to respond to stimulation, confirm AD.

Abnormal results:

- emotional stress
- glucocorticoid therapy
- estrogen contraceptives.

Confirmatory Tests

Cont'd

2. Adrenal antibodies

 Detection of adrenal antibodies in serum of patients with autoimmune Addison's disease

3. Imaging (Ultrasound/CT)

 Ultrasound or CT for adrenal glands for identifying the cause of primary adrenal failure

Investigation of Secondary AC Insufficiency

- Low serum cortisol with low plasma ACTH
- No response to short synacthen test: Adrenocortical cells fail to respond to short ACTH stimulation
- Depot Synacthen test (confirmatory test)
 - 1. Measure basal S. cortisol
 - 2. Stimulate with I.M. synthetic ACTH (1.0 mg) on each of three consecutive days
 - 3. Measure S. cortisol at 5 hours after I.M. injection on each of the three days

Investigation of Secondary AC Insufficiency Depot Synacthen test Cont'd

Interpretation of results:

- Addison's disease: No rise of S. cortisol >600 nmol/L at 5 h after 3rd injection.
- Secondary AC: Stepwise increase in the S. cortisol after successive injections
- Limitations:

Hypothyroidism: Thyroid deficiency must be corrected before testing of adrenocortical functions

Prolonged steroid therapy

Investigation of Secondary AC Insufficiency Cont'd Other Investigations

Insulin-induced hypoglycemia:

Adrenal failure secondary to pituitary causes

MRI for pituitary gland

Investigation for Addison's disease

Screening

- Basal plasma ACTH and basal serum cortisol, glucose, urea and electrolytes
- High ACTH and Low cortisol

Confirmation

Short ACTH stimulation test: No response

Others

- Adrenal autoantibodies
- Ultrasound/CT adrenal glands

Investigation for Secondary AC Insufficiency

Screening

Low ACTH and Low cortisol

Confirmation

 Long ACTH stimulation test: Stepwise increase in S. cortisol

Others

- Insulin-induced hypoglycemia
- MRI pituitary gland

Take home messages

- Addison's disease is due to destruction of adrenals by autoimmune, infection, or infiltrative lesions.
- Adrenocortical hypofunction may occur secondary to pituitary disease, e.g., tumors, infection, trauma, or iatrogenic (surgery or radiation).
- Initial screening for Addison's disease by serum cortisol and ACTH. Other tests to support the diagnosis include serum urea, electrolytes and glucose.
- Confirmatory tests for Addison's disease by short Synacthen test.
- Diagnosis of secondary adrenocortical hypofunction by depot (long) Synacthen test.

References

- Lecture notes, Clinical Biochemistry, Wiley BlackWell, 9th edition, 2013, chapter 9, page 116-133.
- Clinical Chemistry, Principles, Procedures, Correlations, Lippincott Williams & Wilkins, 7th edition, 2013, chapter 21, page 453-471.
- Lippincott's Illustrated Reviews: Biochemistry 6th edition, Unit III, Chapter 18, Pages 219-244.