Obesity

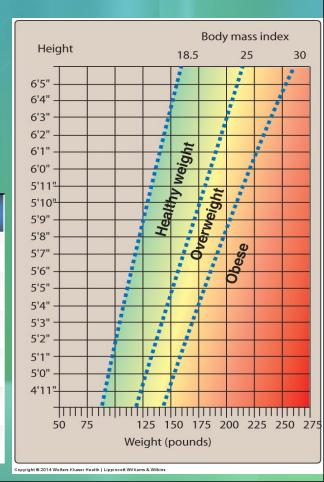
Endocrine Block | Dr. Usman Ghani

Objectives

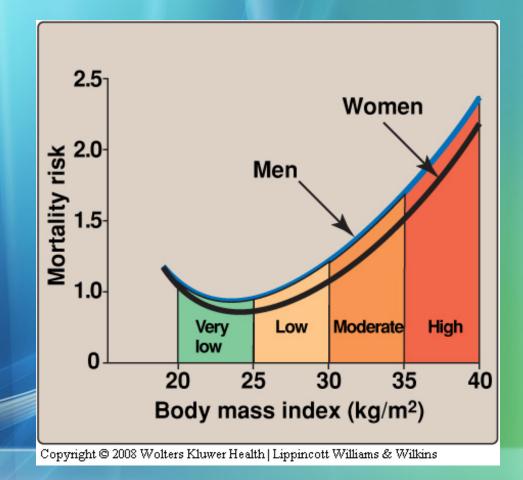
- Define and characterize obesity in terms of BMI and risk factors
- Compare the anatomic and biochemical differences in fat deposition
- Understand the role of adipocytes in fat storage and release of hormones
- Discuss the hormonal control of obesity by leptin, adiponectin and other hormones
- Discuss the management and treatment options for obesity

Overview

- Introduction
- Body Mass Index (BMI)
- Types of fat deposition in the body
- Metabolic changes in obesity
- Adipocytes (fat cells) and weight gain
- Hormones in obesity
 - Leptin, adiponectin, ghrelin, cholecystokinin
- Treatment options

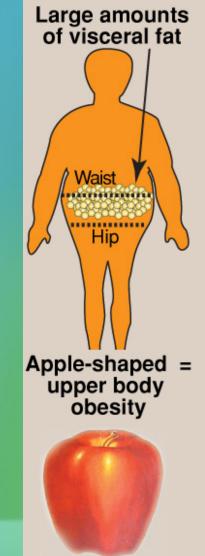

Obesity

- A disorder of body weight regulatory systems
- Causes accumulation of excess body fat
 - >20% of normal body weight
- Obesity is associated with a high risk of:
 - Diabetes mellitus
 - Hypercholesterolemia
 - High plasma triglycerides
 - Hypertension
 - Heart disease
 - Cancer
 - Gallstones, arthritis, gout
 - Mortality

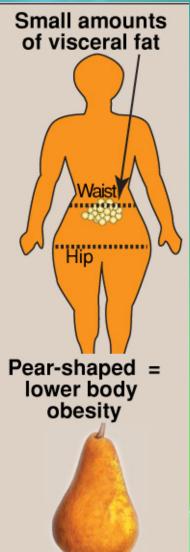

Body Mass Index (BMI)

- BMI is an indirect measure of obesity
- Correlates height, weight and amount of body fat in an individual

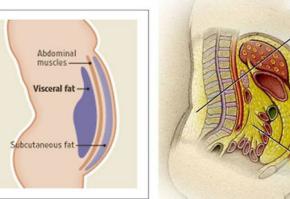
	BMI	GRADE
UNDER WEIGHT	≤ 18.5	
NORMAL	18.5 – 24.9	
OVER WEIGHT	25.0 - 29.9	
OBESE	30.0 - 34.9	Ι
OBESE	35.0 - 39.9	II
HIGHLY OBESE	≥ 40	III



High BMI is associated with increased mortality risk


Anatomic differences in fat deposition Health risks depend on the pattern of fat deposition

- Android, "apple-shaped," or upper body obesity
 - Excess body fat deposited in the central abdominal area
 - Associated with risk of hypertension, insulin resistance, diabetes, dyslipidemia, and coronary heart disease


Anatomic differences in fat deposition Small am of viscer

- Gynoid, "pear-shaped," or lower body obesity
- Fat deposited around the hips or gluteal region
- Associated risks are lower

Different fat depots in the body Subcutaneous Fat

- The fat stored just under the skin in the abdominal and gluteal-femoral region
- Constitutes 80-90% of the total fat in the body
- Visceral Fat
- Composed of omental and mesenteric fat present in close association with digestive tract

Subcutaneous fat

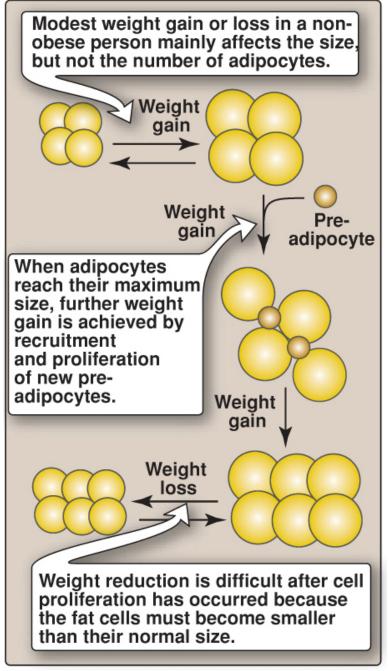
Visceral fat

Biochemical differences in fat deposits

Abdominal fat	Gluteal Fat
Smaller cells	Larger cells
More responsive to hormones (both visceral and subcutaneous)	Less responsive to hormones
Release substances via portal vein to the liver	Release substances to circulation with no effect on the liver

Adipocytes

Triacylglycerols are deposited in adipocytes (fat cells) which can increase in size up to a limit Prolonged overnutrition stimulates


Pre-adipocytes in adipose tissue

Proliferation / differentiation into mature fat cells

Increases adipocyte number

Adipocytes

- Thus obesity is due to a combination of increased fat cell size (hypertrophy) and number (hyperplasia)
- Fat cells, once gained, are never lost
- Reduction in weight causes adipocytes to reduce in size

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

Ectopic fat

 Excessive calories that cannot be stored in adipose tissue "spill over" into other tissues such as muscle and liver

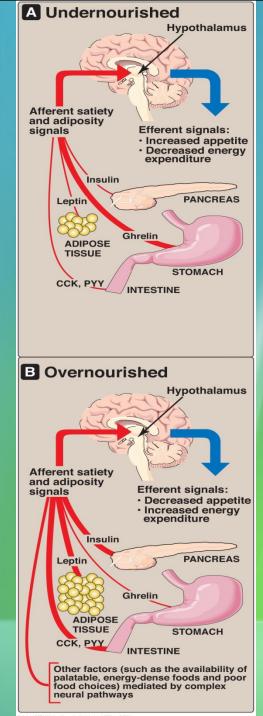
• It is called "ectopic fat" that is strongly associated with insulin resistance

Factors contributing to obesity

- Genetic: familial tendency
- Environmental and behavioral
 - Sex: women more susceptible
 - Activity: lack of physical activity
 - Psychogenic: emotional deprivation/depression
 - Alcohol: problem drinking
 - Smoking
- Drugs: e.g. tricyclic derivatives

Causes of weight Gain

- Energy imbalance
 - calories consumed not equal to calories used
- Over a long period of time
- Due to a combination of several factors
 - Individual behavior
 - Social interaction
 - Environmental factors
 - Genetics


- More in and less out = weight gain
- More out and less in = weight loss
- Hypothalamus

 Control center for hunger and satiety

 Endocrine disorder
 - Hormonal imbalance

Hormonal control

- Appetite is influenced by
 Afferent neural signals, circulating hormones, and metabolites
- These signals cause the release of hypothalamic peptides and activate efferent neural signals
- Adipocytes also function as endocrine cells
- They release many regulatory molecules:
 - Leptin, adiponectin, resistin

Leptin

- A protein hormone produced by adipocytes
- Required to keep the body weight under control
- Signals the brain about fat store levels
- Regulates the amount of body fat by:
 - Controlling appetite and energy expenditure
- Leptin secretion:

Suppressed in starvation (depletion of fat stores) Enhanced in well-fed state (expansion of fat stores) Leptin causes overweight mice to lose weight and maintain weight loss

Leptin Resistance

- Leptin increases metabolic rate and decreases appetite in humans
- Plasma leptin level in obese humans is usually normal for their fat mass

Resistance to leptin has been found in obese humans

Leptin Resistance

- The receptor for leptin in the hypothalamus is produced by *db* gene
- Mutation in the *db* gene causes leptin resistance in mice
 - Leptin resistance may have some role in human obesity
 - Dieting decreases leptin levels
 - Reducing metabolism, stimulating appetite

Adiponectin

- A protein hormone exclusively and abundantly secreted by adipocytes
- Promotes uptake and oxidation of fatty acids and glucose by muscle and liver
- Blocks the synthesis of fatty acids and gluconeogenesis by hepatocytes
 - Net effect is to increases insulin sensitivity / improve glucose/tolerance

Adiponectin levels are inversely correlated with body fat percentage and parallels with HDL levels

 Low levels are seen in metabolic syndrome and diabetes mellitus

Other Hormones

- Ghrelin: A peptide hormone secreted by stomach
- Stimulates appetite
 - Secretion increases just before meals and drops after meals
 - Increases food intake
 - Decreases energy expenditure and fat catabolism

Levels in dieters are *higher* after weight loss

Other Hormones

- The body steps up ghrelin production in response to weight loss
- The higher the weight loss, the higher the ghrelin levels

Cholecystokinin: Peptides released from the gut after a meal Sends satiety signals to the brain

• Insulin: Promotes metabolism

Metabolic Changes in Obesity

- Adipocytes send signals that cause abnormal metabolic changes such as:
- Dyslipidemia
- Glucose intolerance
- Insulin resistance

Benefits of weight loss in obesity

Weight loss decreases risk factors for obesity leading to:

- Lower blood pressure
- Decreased serum triacylglycerols
- Lower blood glucose levels
- Increase in HDL levels
- Decreased mortality
- Beneficial changes in BMR
- Decreased energy requirement
- Slow weight loss is more stable

Treatment options

- Physical Activity combined with healthy diet decreases level of obesity
 - Reduces risk of heart disease and diabetes
- Dieting
 - Use of low-calorie diet
 - Restriction of excessive energy intake

Drugs

Orlistat

- A pancreatic and gastric lipase inhibitor
- Decreases the breakdown of dietary fat

Surgery

- Surgical procedures are designed to reduce food consumption in patients with BMI >40
- Used when other treatment options fail

Take home message

 Obesity is correlated to an increased risk for a number of chronic conditions and mortality

Reference

 Lippincott's Biochemistry. 5th Edition, pp 349-356. Lippincott Williams & Wilkins, New York, USA