PITUITARY GLAND

Objectives:

- By the end of this lecture, the student should be able to describe
 - 1. The microscopic structure of the different parts of the pituitary gland in correlation with their functions.
 - 2. The hypophyseal portal circulation; components and significance.

COMPONENTS

- (A) ADENOHYPOPHYSIS CEREBRI:
 - 1- Pars Distalis (pars anterior)
 - 2- Pars Tuberalis
 - 3- Pars Intermedia

(B) NEUROHYPOPHYSIS CEREBRI:

- 1- Median eminence
- 2- Infundibulum: Neural
- (Infundibular) Stalk (stem)
 - 3- Pars Nervosa

PITUITARY GLAND

NEUROHYPOPHYSIS (A) PARS NERVOSA

CONTENTS:

1- Unmyelinated <u>axons</u> of secretory neurons situated in supraoptic & paraventricular nuclei (i.e. Axons of hypothalamohypophyseal tract).

Function:

Storage & release of:
a- Vasopressin (ADH); by
supraoptic nuclei
b- Oxytocin; by
paraventricular nuclei

2- Fenestrated blood capillaries.

3. HERRING BODIES:

- Are distentions of the axons in p. nervosa.
- Representing accumulation of neurosecretory granules at axon termini and along the length of the axons in p. nervosa.

4. Pitucytes:

Are glial-like cells in p. nervosa.

Structure:

Have numerous cytoplasmic

Processes.

Functions:

Support the axons of the p. nervosa.

N.B. No secretory or neuronal cells in pars nervosa.

PARS DISTALIS:

Types of parenchymal cells:

- (1) Chromophils:
 - a- Acidophils:

- 1- Somatotrophs (GH cells).
- 2- Mammotrophs (Prolactin cells): Increase during lactation.
- b- Basophils:
 - 1- Thyrotrophs (TSH Cells)
 - 2- Gonadotrophs (Gonadotropic cells) (FSH, LH)
 - 3- Corticotrophs (ACTH cells)

(2) Chromophobes: may represent:

1- stem cells.

2- degranulated chromophils.

3- degenerated cells

Blue arrow: acidophils Red arrow: basophils

Yellow arrow: chromophobes

BEST WISHES

