

Glucose Homeostasis

Color Index:

- Main Topic
- Main content
- Important

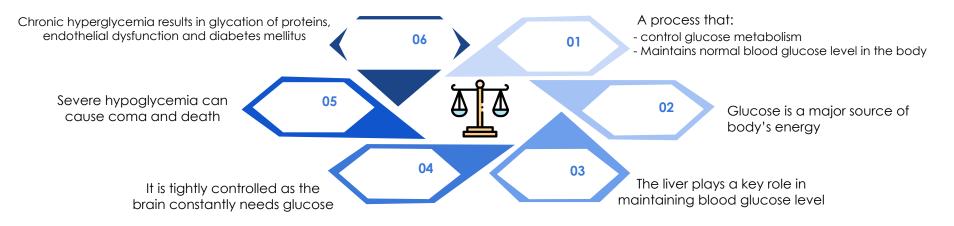
Drs' notes

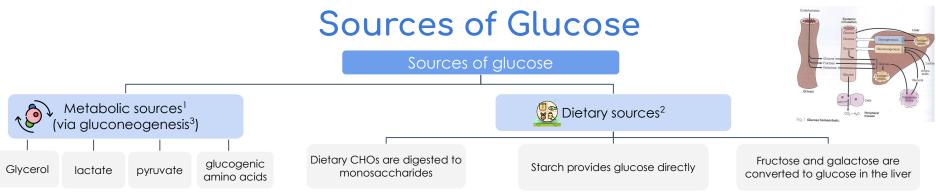
•

•

- \bigcirc Define glucose homeostasis and the metabolic processes involved
- Differentiate between different phases of glucose homeostasis
- Discuss the primary sources of energy and major organs utilizing glucose during the five phases of homeostasis
- arnothing Understand the role of hormones in maintaining glucose homeostasis

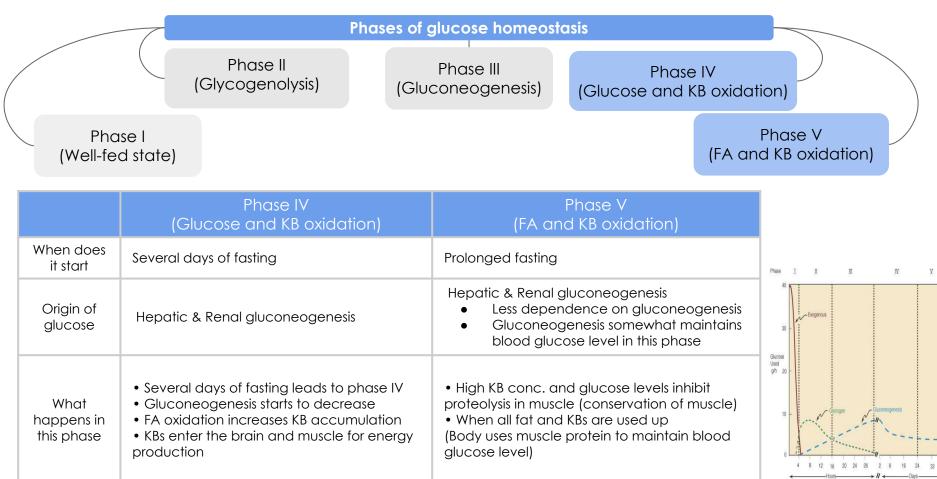
Q Overview:

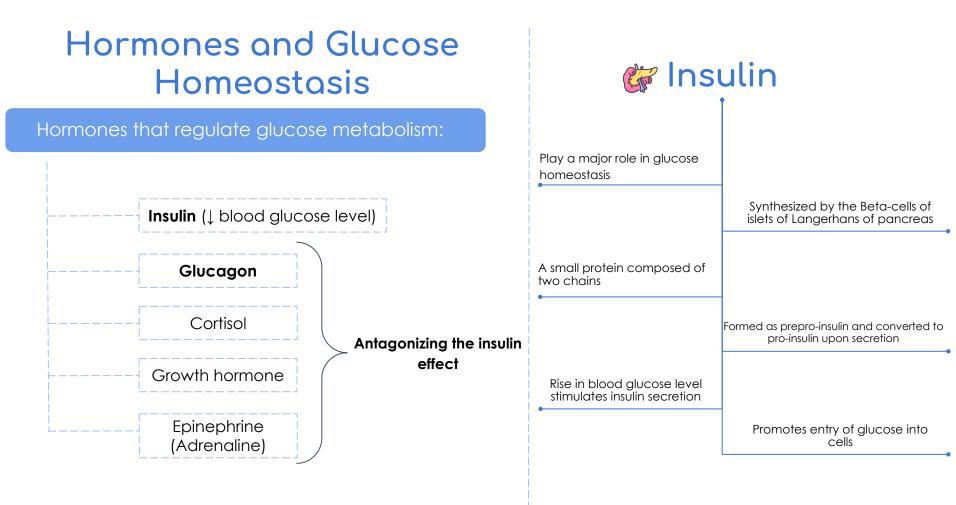

 \overleftrightarrow Introduction


Sources of glucose

Hormones in glucose homeostasis (actions, role in CHO metabolism)
 – Insulin, Glucagon, Cortisol, Growth hormone, Epinephrine

Glucose Homeostasis





Phase I (Well-fed state)	2 Phase II (Glycogenolysis)		Phase III Gluconeogenesis)	4		(Glucose, dation)	5	Phase V (Fatty acid, KB oxidation)
Phase	Origin of blood glucose		Tissue using glucose		Major fuel of brain		el of brain	
I	Exogenous		All			Glucose		
II	Glycogen, Hepatic gluconeogenesis		All except liver Muscle and adipose tissue at diminished rates		Glucose			
III	Hepatic gluconeogenesis, Glycogen		All except liver Muscle and adipose tissue at rates intermediate between II and IV			Gl	JCOSE	
IV	Gluconeogenesis, Hepatic and renal		Brain, RBCs, renal medulla, small amount by muscle		Gluco	ose, k	etone bodies	
V	Gluconeogenesis, Hepatic and renal		Brain at a diminished rate, RBCs, renal medulla All body tissues mainly use FA and KB		ne bc	dies, glucose		

		Pł	nases of glucose h	nomeosta	sis			
	Phase II (Glycogenolysis)			Phase III (Gluconeogenesis) Phase IV (Glucose and KB oxidation		idation)		
Phase I (Well-fed state)					(FA	Phas and KB	se V oxidation)	
		Phase I (Well-fed state)						
Origin of gluc	cose	Dietary CHC	Dietary CHOs (Exogenous)					
phase • Som (glyc • Exce • Thes tissue • Gluc		 Some (glycc) Excess These tissue Glucc) 	glucose is conver ogenesis) s glucose is conve are transported v for storage	rted to gly erted to fo ria VLDL (1	ose load after a CHC ycogen for storage in atty acids and triglyce very low density lipop nis phase (Cori and g	the liver erides in proteins)	the liver to adipose	

	Pha	ses of glucose ho	meosta	asis	
	Phase II (Glycogenolysis)	Phase III (Gluconeogene	əsis)	Phase IV (Glucose and KB oxidation	on)
Phase I (Well-fed state)					Phase V I KB oxidation)
	Phase II (Glycogenolysis)		Phase III (Gluconeogenesis)		
When does it start	during early fasting when dietary glucose supply is exhausted		starts when glycogen stores in liver are exhausted (< 20 hours)		
Origin of Glucose	Hepatic glycogenolysis and gluconeogenesis maintain blood glucose level in this phase		Hepatic gluconeogenesis from: lactate, pyruvate, glycerol and alanine maintains blood glucose level		
Major source of blood glucose	Glycogenolysis ¹ and gluconeogenesis		Gluconeogenesis		
Duration	_			ling status, Hepatic glycog cal activity	en stores and

Insulin Actions

Recall from the 1st lecture (General mechanism of hormone regulation)

Inhibits	Stimulate	The insulin receptor is present on the plasma membrane of cell
Glucogenogenesis	Glucose uptake in muscles and adipose	 Composed of: Alpha subunits (Extracellular) Beta subunits (Cytoplasmic)
Glycogenolysis	Glycolysis	Binding of insulin to alpha subunit causes phosphorylation of Beta subunit Cytoplasm
Lipolysis	Glycogen synthesis	$\begin{array}{c} \text{ATP-binding and} \\ \text{tyrosine kinase} \\ \text{domain} \\ \end{array} \qquad \qquad$
Ketogenesis	Protein synthesis	
Proteolysis	Uptake of ion (K ⁺ and PO ₄ ³⁻)	The activated receptor then phosphorylates intracellular proteins generating a biological response

Insulin and CHO Metabolism

Promotes glucose uptake into cell:

3

4

2

5

6

Glucose is diffused into cells through hexose transporters such as GLUT4

GLUT4 is present in cytoplasmic vesiclesInsulin binding to its receptor causes vesicles to diffuse into plasma membrane

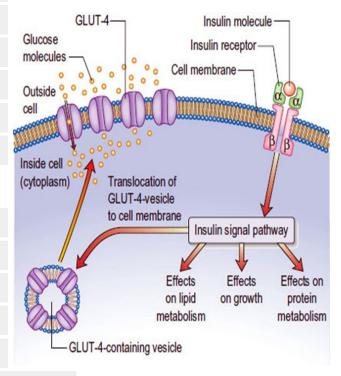
GLUT4 is inserted into the membrane

Allowing glucose transport into the cell

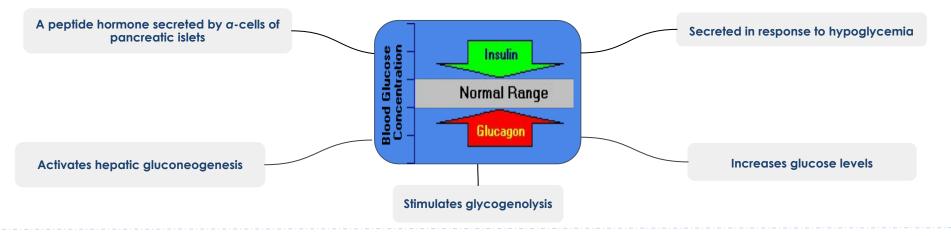
Brain and liver have non insulin dependent glucose transporter

Insulin's MOA in decreasing blood glucose levels

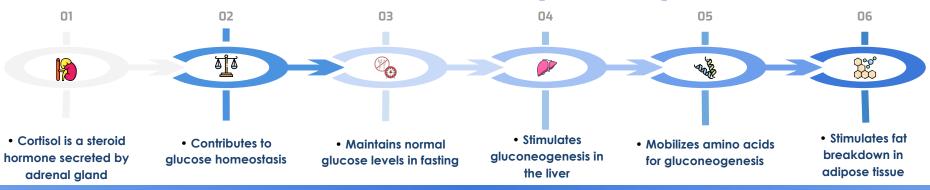
Stimulates glycogen synthesis


Decreases blood glucose levels

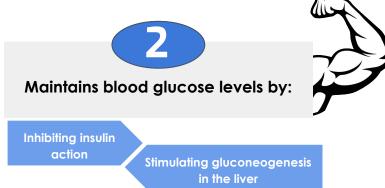
Increases glycolysis



Insulin deficiency causes diabetes mellitus


Hyperinsulinemia is due to insulin resistance in (Diabetes mellitus or Metabolic syndrome)

Glucagon



Glucocorticoids (Cortisol)

Epinephrine

A catecholamine hormone secreted by adrenal gland Stimulates lipolysis in adipose tissue when blood glucose levels fall Promotes glycogenolysis in skeletal muscle

Take Home Messages

Glucose homeostasis is a process that controls glucose metabolism and maintains blood glucose level in the body

There are five phases of glucose homeostasis- Phase I (well-fed state), Phase II (glycogenolysis), Phase III (gluconeogenesis), Phase IV (glucose, ketone bodies (KB) oxidation), Phase V (fatty acid (FA), KB oxidation)

Hormones that regulate glucose metabolism include insulin (lowers glucose level) and glucagon (increases glucose level)

Other hormone such as cortisol, growth hormone and adrenaline are known to antagonize the actions of insulin thus increases the blood glucose level

Summary

Phases	Phase I	Phase II	Phase III	Phase IV	Phase V
Origin of blood glucose	Dietary CHOs (Exogenous)	Hepatic glycogenolysis and gluconeogenesis	Hepatic gluconeogenesis	Hepatic & Renal gluconeogenesis	Hepatic & Renal gluconeogenesis Less dependence on gluconeogenesis
Tissue using glucose	All body tissue	All except liver, Muscle and adipose tissue.	All except liver, Muscle and adipose tissue.	Brain , RBCS , renal medulla . Small amount by muscle	All body tissues use FA and KB oxidation brain, RBC, Adrenal medulla
Major fuel for brain	Glucose	Glucose	Glucose	glucose and KB	glucose and KB
Notes	 Liver removes about 70% of glucose Glycogenesis Gluconeogenesis is inhibited (Cori and glucose-alanine cycles are inhibited) 	Start during early fasting when dietary glucose supply is exhausted	starts when glycogen stores in liver are exhausted (< 20 hours)	 Gluconeogenesis starts to decrease FA oxidation increases KB accumulation KBs enter the brain and muscle for energy production 	High KB conc. and glucose levels inhibit proteolysis in muscle (conservation of muscle)

Summary

Insulin	Glucagon	Cortisol	Growth hormone	Epinephrine
A protein hormone	A peptide hormone	A steroid hormone	A protein hormone	A catecholamine hormone
secreted by <u>β</u> -cells of pancreatic islets	secreted by a-cells of pancreatic islets	secreted by adrenal gland	secreted by anterior pituitary gland.	secreted by adrenal gland
Stimulates: 1- Glycolysis 2-Glucose uptake 3-Glycogen and protein synthesis <u>Inhibits:</u> 1-Glucogenogenesis 2-Glycogenolysis 3-Ketogenesis	Increases glucose levels by: • Stimulates glycogenolysis. • Activates hepatic <u>gluconeogenesis.</u>	 Stimulates <u>aluconeogenesis</u> in the liver. Mobilizes amino acids for <u>aluconeogenesis.</u> Stimulates fat breakdown in adipose tissue. 	 Inhibiting insulin action. Stimulating <u>aluconeogenesis</u> in the liver. 	 1- Stimulates lipolysis in adipose tissue when blood glucose levels fall. 2- Promotes glycogenolysis in skeletal muscle.

Quiz

Q1: Which of the a) Phase I		MCQs : es is transported via V c) Phase III	'LDL? d) Phase IV	SAQs : <u>Q1:</u> How does growth hormone contribute in maintaining blood glucose?
<u>Q2:</u> Insulin stimu	late the uptake	of which ions?		
a) K	b) PO4	c) Na	d) Both a&b	<u>Q2:</u> What are the sources of glucose?
a) Cytoplasm c) Nucleus		b) Extracellular d) Nucleolus		Q3: Name 4 hormones antagonize insulin actionQ4: What does chronic hyperglycemia result in?
	of the following c	loes the insulin stimul		★ MCQs Answer key:
a) Lipolysisc) Glycolysis		b) Gluconeogend) Glycogenolysi		1)a 2)d 3)a 4)c 5)a 6)b
gluconeogenes	is?	es of glucose homeos		 ★ SAQs Answer key: 1) Inhibit insulin action, stimulating gluconeogenesis in the liver 2) Dietary sources and metabolic sources
a) Phase I	b) Phase II	c) Phase III	d) Phase IV	 Glucagon, cortisol, growth hormone, epinephrine
<u>Q6:</u> Which ONE homeostasis? a) Ketone bodie		hisms takes place in p b) Glycogenoly		 4) Glycation of proteins, endothelial dysfunction and diabetes mellitus

Team members

- Ajeed Al-Rashoud
- Alwateen Albalawi
- Amira AlDakhilallah
- Deema Almaziad
- Ghaliah Alnufaei
- Haifa Alwaily
- Leena Alnassar
- Lama Aldakhil
- Lamiss Alzahrani
- Nouf Alhumaidhi
- Noura Alturki
- Sarah Alkhalife
- Shahd Alsalamah
- Taif Alotaibi

Boys Team:

- Alkassem Binobaid
- Fares Aldokhayel
- 🚦 Fahad Alsultan
- Khayyal Alderaan
- Mashal Abaalkhail
- Naif Alsolais
- Omar Alyabis
- 👌 Omar Saeed
- Rayyan Almousa
- Yazen Bajeaifer

Team Leaders

Lina Alosaimi

Mohannad Alqarni

"No matter how great the talent or efforts, some things just take time. You can't produce a baby in 1 month by getting 9 women pregnant" - Warren Buffet

We hear you