

Objectives

- Understand the structure of the pancreas and have a basic understanding of its function.
- Understand the pathogenesis and major histopathological changes seen in diabetes mellitus type 1 and type 2.
- Recognize the major complications of diabetes mellitus.

Black: original content Red: Important Blue: only found in males slides Orange: Doctor notes Grey: Extra/Robbins Purple: Only found in females slides

Introduction

- Group of metabolic disorders characterized by **hyperglycemia**.
- Hyperglycemia due to: defect in insulin secretion, action, or most commonly, both.
- It is the leading cause of end-stage renal disease, adult-onset blindness, and nontraumatic lower extremity amputations in USA.

Prediabetes

- Impaired glucose tolerance.
- Elevated blood sugar that does not reach the criteria for diagnosis of diabetes.
- ¼ of individuals with prediabetes and additional risk factors such as obesity and family history will develop overt diabetes in the next 5 years.
- They have elevated risk of cardiovascular disease.

Manifestations

- Triad of diabetes: Polyuria, polydipsia and polyphagia.
- In severe cases, ketoacidosis, all resulting from metabolic derangements.
- The combination of polyphagia and weight loss.

Diagnosis

- Normal blood glucose level = 70 to 120 mg/dl.
- Diagnostic criteria for diabetes:

Test	Prediabetes	Diabetes
Fasting plasma glucose	100 - 125 mg/dL	≥ 126 mg/dl
Random plasma glucose with classic hyperglycemic signs	_	≥ 200 mg/dl
2-hour plasma glucose during an oral glucose tolerance test with a loading dose of 75 gm Mainly used to diagnose diabetes in pregnancy	140 - 199 mg/dL	≥ 200 mg/dl
Glycated hemoglobin (HbA1C) level ¹	5.7% - 6.4%	≥ 6.5%

- All tests need to be **repeated and confirmed on a separate day**, except the random glucose test.
- The ADA recommends maintaining HbA1C below 7% to reduce risk of complications.
- Acute conditions associated with stress, such as severe infections, burns, or trauma, can lead to **transient hyperglycemia** due to secretion of hormones such as catecholamines and cortisol that oppose the effects of insulin.
- The diagnosis requires persistence hyperglycemia and resolution of the acute illness.

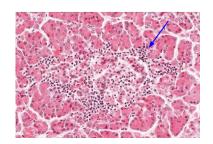
¹⁻ It is used to measure glycemic control over long periods of time (2-3 months); the measure of nonenzymatic glycosylation to Hb in RBCs

Classification

1- Type 1 Diabetes	2- Type 2 Diabetes	3- Exocrine Pancreatic Defects	4- Endocrinopathies
Beta cell destruction, usually leading to absolute insulin deficiency.	Combination of insulin resistance and beta cell dysfunction.	 Chronic pancreatitis Pancreatectomy Cystic fibrosis Hemochromatosis 	 Growth hormone excess (acromegaly) Cushing syndrome Hyperthyroidism Pheochromocytoma
5- Genetic Defects of Beta Cell Function	6- Genetic Defects in Insulin Action	7- Infections	8- Drugs
- Maturity-onset diabetes of the young (MODY) - Insulin gene mutations	Insulin receptor mutations	Cytomegalovirus infection Coxsackievirus B infection Congenital rubella	Glucocorticoids Thyroid hormone β-Adrenergic agonists

9- Gestational (pregnancy) Diabetes

Type 1 diabetes


- Autoimmune disease characterized by gradual process of pancreatic β-cell destruction and an **absolute** deficiency of insulin.
- 5% to 10% of all cases.
- Most common subtype diagnosed in patients < 20 years of age.
- Although beta cell destruction is a gradual process, the transition from impaired glucose tolerance to overt diabetes may be abrupt.
- Insulin replacement is the mainstay of treatment.

Pathogenesis

- Islet destruction caused primarily by failure of self-tolerance in T cells specific for beta cell antigens.
- The classic manifestations of occur after >90% of the β cells have been destroyed.
- Autoantibodies against β cell antigens, are detected in the blood of 70% to 80% of patients.
- Genetic susceptibility: HLA-DR3, or DR4 and Several non-HLA genes in 90% to 95% of white patients.
- Environmental factors: infections.

Morphology

- Lesions in the pancreas are inconstant and rarely of diagnostic value.
 - Reduction in the number and size of islets.
 - **Insulitis:** Leukocytic infiltration of the islets, composed of <u>T lymphocytes</u>.
- An increase in the number and size of islets, characteristic of nondiabetic newborns of diabetic mothers.

Diabetic Ketoacidosis

- Caused by **stress** which may worsen the metabolic imbalance.
- Plasma glucose \rightarrow range from 500 to 700 mg/dL.
- **Characteristics** caused by hyperglycemia:
 - Osmotic diuresis.
 - **Dehydration**¹.
- Activation of the ketogenic machinery:
 - Insulin deficiency → excessive breakdown of adipose stores → increased FFAs
 → oxidized by the liver to produce ketones as a source of energy for consumption by vital organs (e.g., the brain).
 - The rate of ketones formation may exceed the rate at which they can be used by peripheral tissues, → ketonemia and ketonuria.
 - The accumulating ketones decrease blood pH, \rightarrow **metabolic acidosis**.

Type 2 diabetes

- Combination of **peripheral resistance to insulin** action and **relative insulin deficiency** (inadequate secretory response by the pancreatic β cells).
- 90% to 95% of diabetic cases. Many of them are overweight.
- The prevalence in children and adolescents is increasing due to the \uparrow of obesity.
- Dietary restriction and exercise are the first line of defense: eventually they need pharmacological intervention to reduce hyperglycemia

Pathogenesis

- Heterogeneous and multifactorial complex disease that involves interactions of genetics, environmental risk factors, and inflammation.
- Characterized by **two defects**:
 - **Insulin resistance:** decreased ability of peripheral tissues to respond to insulin. The liver, skeletal muscle, and adipose tissue.
 - **Beta cell dysfunction:** that is manifested as inadequate insulin secretion in the face of insulin resistance and hyperglycemia.

Obesity and Insulin Resistance

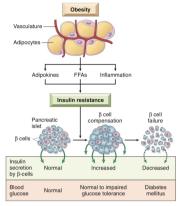
- **Central obesity** (abdominal fat) is more likely to be associated with insulin resistance than is peripheral (gluteal/ subcutaneous) obesity.
- **Metabolic syndrome** has been applied to several findings dominated by:
 - Visceral obesity, Insulin resistance, Glucose intolerance and Cardiovascular risk factors such as hypertension and abnormal lipid profiles.
 - High risk for the development of type 2 diabetes.
- 1. Rehydration is the 1st line treatment.

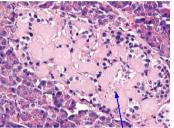
- Obesity can adversely impact insulin sensitivity by:
 - Excess FFAs:
 - Increased fasting plasma FFAs decrease insulin sensitivity.
 - Adipokines:
 - Normally: leptin and adiponectin decrease blood glucose, by increasing the insulin sensitivity in the peripheral tissues.
 - Obesity: Adiponectin levels are decreased contributing to insulin resistance.
 - Inflammation:
 - Excess FFAs within macrophages and beta cells can activate the inflammasome, a multiprotein cytoplasmic complex that leads to secretion of the interleukin, and other cytokines promote insulin resistance.

Morphology

- **Amyloid** replacement of islets in long-standing type 2: deposition of pink, amorphous material.
- Fibrosis at advanced stages.

Hyperosmolar Nonketotic Coma


- Severe **dehydration** resulting from sustained osmotic diuresis and urinary fluid loss due to chronic hyperglycemia.
- Seen in older adult diabetic who is disabled by a stroke or an infection and is unable to maintain adequate water intake.


Monogenic Forms of Diabetes

- Type 1 and type 2 diabetes are genetically complex, not single-gene mutation.
- Monogenic forms of diabetes: result from loss of function mutations within a single gene.
- **Causes**: primary defects in beta cell function and insulin receptor signaling.
- Classified based on age of onset:
 - Neonatal period: congenital early onset diabetes.
 - **Before 25 years of age:** maturity onset diabetes of the young (MODY).

Gestational diabetes

- Pregnancy is a "diabetogenic" state in which the hormones causes insulin resistance. In some euglycemic pregnant women this can give rise to gestational diabetes. Could also overt to DM type 2 later in life
- Increases the risk for stillbirth and congenital malformations in the fetus.
- Fetal overgrowth (**macrosomia**) occurs because maternal hyperglycemia can induce compensatory secretion of insulin-like growth factors in the fetus.

Chronic Complications of Diabetes

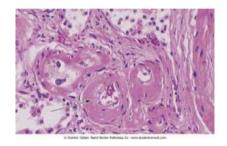
1- Macrovascular complications

- Atherosclerosis of the Aorta and large and medium-sized arteries.
- **Coronary arteries:** MI caused by atherosclerosis of the coronary arteries, is the **most common causes of death in diabetics**.
- Large Renal Arteries: also exhibit severe atherosclerosis, but most renal damage is in the glomeruli and microcirculation.
- Gangrene of the lower extremities, due to advanced vascular disease.

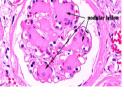
Morphology

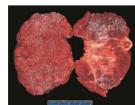
- **Hyaline arteriosclerosis:** an amorphous, hyaline thickening of the wall of the arterioles, casing narrowing of the lumen.
- Associate with hypertension.
- It is more common and more severe in diabetics than non diabetics.

2- Microvascular complications


- Diffuse thickening of **basement membranes** of vessels
- Mostly seen in skin, skeletal muscles, retina, glomeruli, and renal medulla.
- Underlies the development of diabetic **nephropathy**, **retinopathy**, and **neuropathy**.
- The basal lamina is markedly thickened by concentric layers of hyaline material composed mainly of **type 4 collagen**.
- Despite increased thickness it is more leaky to plasma proteins.

3- Nephropathy


1. Glomerular lesion:


Capillary basement membrane thickening	Diffuse mesangial sclerosis	Nodular glomerulosclerosis	
Thickening along entire length.	Diffuse increase in: - Mesangial matrix	Kimmelstiel-wilson lesion: ball-like deposits of a	
	- Mesangial cells - When glomerulosclerosis is	laminated matrix in the periphery of the glomeruli	
Q. A.	marked: nephrotic syndrome manifests (proteinuria,	- PAS positive	
Fig. 20.28 Renal cortex showing thickening of tubular basement mem- branes in a specimen from a diabetic pattern: (teriodic stod-schiff state)	hypoalbuminemia, edema).	- This disease is indicative of DM, found in 15-30% of patients with long term DM.	

- Both diffuse and nodular glomerulosclerosis induce enough ischemia to causing scarring, indicated by finely granular-appearing cortical surface.
- Renal Failure is the second cause of death from diabetes.

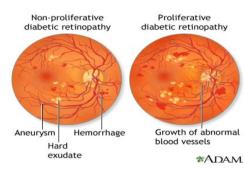
Chronic Complications of Diabetes

- 2. Arteriosclerosis: of the renal arteries.
- 3. Pyelonephritis: acute or chronic inflammation of the kidney.
 - Usually start with the interstitial tissue then spread to tubules.
 - More common and severe in diabetics than non diabetics.
 - **Necrotizing papillitis:** a more severe involvement, causing necrosis of the papilli; is more prevalent in diabetics.

4- Ocular Complications

• Could be retinopathy cataract formation, or glaucoma.

Morphology


- Nonproliferative retinopathy:
 - Hemorrhage
 - Retinal exudate (cotton wool sots) can be: Soft \rightarrow microangiopathy or Hard \rightarrow deposits of plasma proteins and lipids.
 - **Microaneurysm:** discrete saccular dilations or choroidal capillaries, appear as red spots on ophthalmoscopes.
 - Microangiopathy: thickening of retinal capillaries.
- Proliferative retinopathy: neovascularization and fibrosis
 - Leading to blindness, especially if it involves the macula.
 - And cause retinal detachment.

5- Diabetic neuropathy

- **Peripheral, symmetric neuropathy:** affecting the motor and sensory function of lower extremities. (most common form of neuropathy)
- Autonomic neuropathy: disturbance in bowel and bladder functions
- Diabetic mononeuropathy: sudden foot drop or wrist drop.
- Microvasculopathy of small vessels contribute to these disorders.

6- Infections

- Diabetics are more susceptible to infection (5% of diabetes-related death)
- Bacterial and fungal infection occur in poorly controlled hyperglycemic patients
- Renal papillary necrosis: could occur due to bladder infection
- Mucormycosis: in poorly controlled diabetes
 - Fungal infection tends originate in nasopharynx or paranasal sinus
 - Spread to orbit cavity and brain
- In patient with diabetic neuropathy: trivial infection to the toe may be the first in a long succession of complications (bacteremia, pneumonia, gangrene) that may lead to death

Summary

Type 1 Diabetes		
Pathogenesis	 Autoantibodies against β cell antigens, are detected in the blood of 70% to 80% of Patients. Genetic susceptibility: HLA-DR3, or DR4 and Several non-HLA genes in 90% to 95% of white patients. Environmental factors: infections. 	
Morphology	 Reduction in the number and size of islets. Insulitis: Leukocytic infiltration of the islets, composed of T lymphocytes. An increase in the number and size of islets, characteristic of nondiabetic newborns of diabetic mothers. 	
Diabetic Ketoacidosis	 Plasma glucose → range from 500 to 700 mg/dL. Characteristics: Osmotic diuresis and Dehydration. Insulin deficiency → excessive breakdown of adipose stores → increased FFAs → oxidized by the liver to produce ketones as a source of energy for consumption by vital organs (e.g., the brain). The accumulating ketones decrease blood pH → metabolic acidosis. 	
Type 2 Diabetes		
Pathogenesis	 Characterized by two defects: Insulin resistance: decreased ability of peripheral tissues to respond to insulin. The liver, skeletal muscle, and adipose tissue. Beta cell dysfunction: that is manifested as inadequate insulin secretion in the face of insulin resistance and hyperglycemia. 	
Morphology	 Amyloid replacement of islets in long-standing type 2: deposition of pink, amorphous material. Fibrosis at advanced stages. 	
Hyperosmolar Nonketotic coma	 Severe dehydration resulting from sustained osmotic diuresis and urinary fluid loss due to chronic hyperglycemia. Seen in older adult diabetic who is disabled by a stroke or an infection and is unable to maintain adequate water intake. 	
Chronic complications of DM		

- 1. Macrovascular Complications: Atherosclerosis
- $2.\ M\underline{i} crovascular\ Complications$
- 3. Nephropathy: 1. Glomerular lesion 2. Arteriosclerosis 3. Pyelonephritis
- 4. Ocular Complications: Retinopathy, cataract, glaucoma
- 5. Diabetic neuropathy: 1. Peripheral, symmetric 2. Autonomic 3. Diabetic mononeuropathy
- 6. Infections: 1. Renal papillary necrosis 2. Mucormycosis

Quiz

1) An infant is born following premature delivery. Multiple external congenital anomalies are noted. The infant exhibits a seizure soon after birth. The blood glucose is 19 mg/dL. Which of the following maternal diseases is the most likely cause for the observed findings in this infant?

- A- Cystic fibrosis
- B- Diabetes mellitus, type 2
- C- Gestational diabetes
- D- Maturity onset diabetes of the young

2) A 50-year-old man has had a nonhealing ulcer on the bottom of his foot for 2 months. On examination, the 2-cm ulcer overlies the right first metatarsal head. There is reduced sensation to pinprick in his feet. His visual acuity is reduced bilaterally. Laboratory studies show serum creatinine is 2.9 mg/dL. Which of the following laboratory test findings is he most likely to have?

A- Glucosuria

- **B-** Hypoalbuminemia
- **C-** Hypokalemia
- **D-** Uricosuria

3) During Mid Morning, blood glucose levels fall and stimulate the secretion of which hormone?

- A- PTH
- B- Insulin
- C- Glycogen
- D- Glucagon

4) the risk factors for type 1 diabetes mellitus include:

- **A-** All of the options listed are correct.
- B- family history
- C- viral infection
- D- being overweight

5) A 35 year old patient comes to your clinic with newly diagnosed diabetes. Lab tests reveal no C-peptide in her blood. She has lost a lot of weight recently, despite the fact that she has been eating a lot. This patient has:

- A- adult-onset diabetes
- **B-** type 2 diabetes
- C- type 1 diabetes
- **D-** need more info

6) which of the following organism infection is highly predisposing to Diabetes mellitus?
A- human immunodeficiency virus (HIV)
B- coxsackie B virus
C- cytomegalovirus
D- B & C

7) Khalid, a 68 year-old civil engineer. BMI: 35, he has a history of poorly controlled DM over the last 20 years. 2 days ago he died of a stroke affected the brainstem. What is suspected to see in pancreatic islets of Langerhans:

- A- Beta cells destruction by autoantibodies
- **B-** Insulitis
- C- Islets replaced by Amyloid pink amorphous material
- D- nodular mesangial sclerosis

8) What are the genes involved in developing diabetes type 1?

A- HLA-DR3.
B- HLA-DR14.
C- HLA-DR7.
D- A&C

Done by the Dream Team Special thanks to Alwaleed Alsaleh

