

<u>Editing File</u>

<u>Mnemonic File</u>

Endocrine Block

Pharmacology team 438

Oral Hypoglycemic Drugs

Objectives:

By the end of the lecture , you should know:

- Classify different categories of antidiabetic drugs.
- Identify mechanism of action, pharmacokinetics and pharmacodynamics of each class of antidiabetic drugs.
- Identify the clinical uses of antidiabetic drugs
- Know the side effects, contraindications of each class of antidiabetic drugs.

<u>Color index:</u>

Black : Main content Red : Important Blue: Males' slides only Purple: Females' slides only Grey: Extra info or explanation Green : Dr. notes

Types of diabetes mellitus

	Type II	Type I	
	Due to obesity & genetic factors -80-90% occurrence	Due to autoimmune or viral diseases (the only treatment	
	-Over age 35	diabetes is insulin injections)	
	Patients with Type II dia d	abetes have two physiological lefects:	
1. 2.	Abnormal insulin secretion. (partial p Resistance to insulin action in target t receptors.	production of insulin) tissues associated with decreased number of insul	in
	Treatment of Type	e II Diabetes (NIDDM) ¹	

Increase physical

Caloric restriction and weight loss are IMP in obese diabetic patients.

Oral antidiabetic drugs.

Oral hypoglycemic drugs (Antidiabetic drugs)

Insulin secretagogues²:

- 1. Sulfonylurea drugs.
- 2. Meglitinides.
- 3. Incretin mimetics.

Insulin sensitizers ³:

Biguanides Thiazolidinediones

Agents that reduce carbohydrate absorption: 1. Alpha glucosidase inhibitors Agents that reduce glucose renal reabsorption (Increase glucose excretion): 1. Sodium/glucose cotransporter 2 (SGLT2) inhibitors

 Type 2 diabetes is managed through a stepwise approach, starting with diet and exercise, followed by oral hypoglycemic drugs, then combination therapy if the patient is not responding to monotherapy of oral hypoglycemics, and finally in advanced severe cases insulin injections are used.
 They increase the production of insulin

3. They increase the sensitivity of peripheral tissues to insulin.

Insulin secretagogues

- Are drugs which increase the amount of insulin secreted by the pancreas
- Their action depends upon **functioning** pancreatic β -cells (Not for T1D)
- It includes: 1. Sulfonylureas 2. Meglitinides 3. Incretin mimetics
 - _____

Prof.Hanan= memorize the highlighted drugs

1) sulfonylureas

Class	First genera	tion (-amide)	Second generation (-ride/zide)		
Drug	-Acetohexamide -Tolazamide -Chlorpropamid	cetohexamide -Tolazamide hlorpropamide		- Gliclazide - Glipizide	
	Long acting	Short acting	Long acting (-ride)	Short acting (-zide)	
ΜΟΑ	 ↑Hyperglycemia→Blockade of ATP dependent K+channels→ Opening of voltage-dependent Ca+ channels → ↑intracellular calcium in the beta cells → ↑Insulin release Stimulate insulin release from functioning B cells by blocking of ATP-sensitive K channels which causes depolarization and opening of voltage- dependent calcium channels, which causes an increase in intracellular calcium in the beta cells, which stimulates insulin release. 				
D K	 Orally, well absorbed. All are highly bound to plasma proteins. Excreted in urine (caution:elderly and renal disease). Cross placenta, stimulate fetal β-cells to release insulin → fetal hypoglycemia at birth.¹ Reach peak concentration after 2-4 hr Duration of action is variable Metabolized in liver 				
Р.К		-	 More potent that Have longer dur Have fewer adversion interactions. Less frequency of 	n first generation ation of action. erse effects & drug of administration.	
Uses	• Treatment of Type II diabetes monotherapy or in combination with other antidiabetic drugs ²			with other antidiabetic	
ADR	 Hyperinsulinemia & Hypoglycemia: More common in long acting sulfonylureas; particularly (glyburide, and glimepiride) More in old age, hepatic or renal diseases. Weight gain due to increase in appetite unless the diabetic diet and exercise program are followed. Allergy manifestation as they contain Sulfa. 			y (<mark>glyburide, and</mark> liet and exercise	
		Glipizide	Glyburide (Glibenclamide)	Glimepiride	

Absorption Well reduced by food Well				
Metabolism	Metabolism Yes Yes			
Duration of action	10 – 16 hrs, short	12 – 24 hrs, long		
Doses Divided doses 30 min before meals Single dose			dose	
Excretion Urine				

1. All hypoglycemic drugs are C.I during pregnancy, even if the patient was diagnosed with type 2 diabetes. The only treatment that is allowed during pregnancy is insulin.

2. Determined by measuring blood glucose level and the patient's response to the treatment

2) Meglitinides

Drug	Repaglinide (-glinide)			
MOA	 Rapidly acting insulin secretagogues Mechanism of action is identical to sulfonylureas (↑Hyperglycemia→Blockade of ATP dependent K+channels→ Opening of voltage-dependent Ca+ channels → ↑intracellular calcium in the beta cells → ↑Insulin release) 			
P.K	 Orally, well absorbed. Very fast onset of action, peak 1 h. Short duration of action (4 h). Metabolized in liver and excreted in bile. Taken just before each meal (3 times/day) The dose should be skipped if the meal is missed ¹. 			
Uses	 Type II diabetes as a monotherapy or in combination with other oral hypoglycemic drugs As alternative to sulfonylureas (SU) in patients allergic to SU and in elderly 			
ADR	 Less incidence than sulfonylureas ²: Hypoglycemia. Weight gain. 			

3) Incretin mimetics

oral glucose (OG)

intravenous (IG)

glucose

time -

It shows that oral glucose induces insulin secretion more than I.V glucose due to the action of **incretins**

Types of Incretin mimetics

Class	GLP-1 agonists (-glutide)	DPP- 4 inhibitors (-gliptin)
Drugs	Liraglutide (Victoza, Saxenda)	Sitagliptin (Januvia)
MOA	 Binds to GLP-1 receptors & stimulates insulin secretion from β cells It also reduces glucagon secretion by inhibiting a cells of the pancreas It decreases appetite and inhibits body weight gain 	• Inhibit DPP-4 enzyme and leads to an increase in incretin hormones (GLP-1) level. This results in an increase in insulin secretion & decrease in glucagon secretion
P.K	 given <u>s.c.</u> once/day (single- dose prefilled disposable pens) The maximum dose of Victoza is 1.8mg 	 given orally given once daily half life = 8- 14 h
Uses	 Saxenda: As a treatment for adults who are obese or overweight with at least one weight-related comorbid condition (e.g. hypertension, type 2 diabetes mellitus, or dyslipidemia). Used together with diet and exercise to treat type 2 diabetes and in patients who are not controlled with other oral antidiabetics. 	 Type II DM as an adjunct to diet & exercise as a monotherapy or in combination with other antidiabetic drugs
ADR	 Nausea,vomiting and diarrhea (most common) Hypoglycemia when combined with sulfonylureas or insulin (not alone) Loss of appetite Pancreatitis (rare) 	 Nausea, abdominal pain, diarrhea Nasopharyngitis Headache
C.I	Not used in type 1 diabetes	_

Trade name
 to avoid the dose side effects, you give partial doses (e.g. starting at 0.6) and gradually increasing it (0.8, 1.2, etc) but the maximum is 1.8

Insulin sensitizers¹

Drugs that increase the sensitivity of peripheral target organs to insulin

Biguanides E.g. Metformin Thiazolidinediones E.g Pioglitazone

1) Biguanides

Drug	Metformin		
MOA	 Reduces insulin resistance. ★ Increases sensitivity of liver, muscle & adipose tissues to insulin & increase peripheral glucose utilization (tissue glycolysis). Inhibits hepatic glucose production (gluconeogenesis). Impairs glucose absorption from GIT. ★ Improve lipid profile : ↓LDL, ↓ VLDL, ↑HDL 		
P.K	 Orally Not bound to serum protein, t 1/2: 3 hours. Not metabolized, excreted unchanged in urine 		
Advan tages	 No risk of hypoglycemia² No weight gain has prominent lipid-lowering activity³ Inexpensive 		
Uses	 In patients with type 2 diabetes who are obese because it promotes modest weight reduction (first-line therapy). Type 2 diabetes as monotherapy or in combination with other antidiabetics. 		
ADR	 GIT disturbances⁴: Metallic taste in the mouth, nausea, vomiting, diarrhea Metformin should be taken with meals and should be started at a low dose to avoid intestinal side effects then increase gradually. Lactic acidosis⁵ (very rare): Serious lactic acid accumulation usually occurs only in the presence of predisposing conditions: Renal insufficiency Severe liver disease Alcohol abuse⁶ Heart failure⁷ Pulmonary insufficiency⁷ Cardiogenic or septic shock⁷ 		
C.I	 Renal disease Liver disease Cardiopulmonary dysfunction Pregnancy Alcoholism 		
1: <u>first line the</u> 2: only happen 3: very benefic	<u>rrapy</u> afterlife style modifications. s with insulin secretagogues, because they ONLY increase the sensitivity and won't increase insulin secretion. ial as most diabetic patients have abnormal lipid profile, these drugs are even used by some obese patients to decrease obesity and correct		

- lipid profile without the risk of hypoglycemia. 4: particularly at the beginning of the therapy, ask patient to tolerate GIT disturbances as they will **subside** in a few weeks
 - 5: due to their glycolytic action6: because alcohol itself increases glycolysis

7: due to low oxygen delivery to tissues. Tissues start depending more on glycolysis so patient already has high glycolysis.

8: later on in the therapy when B_{12} absorption is affected it is recommended to give the patient supplements.

2) Thiazolidinediones

Drug	Pioglitazone & Rosiglitazone (-glitazone)				
ΜΟΑ	 Activate peroxisome proliferator-activated receptor-Gamma (PPAR-Gamma¹) Increase sensitivity of target tissues to insulin. Increase glucose uptake and utilization in muscle and adipose tissue 				
P.K	 Orally (once daily dose). Highly bound to plasma albumins (99%) Slow onset of activity Half life 3-4 h² Metabolized in the liver Excreted in bile and urine 				
Uses	 Type II diabetes with insulin resistance. Used either alone or in combination with sulfonylurea, biguanides or insulin. No risk of hypoglycemia when used alone 				
ADR	 Hepatotoxicity (monitor liver function tests for 1st year of therapy). Fluid retention (Edema) Congestive heart failure³ Mild weight gain Failure of estrogen-containing oral contraceptives⁴ 				

α-Glucosidase inhibitors

Drug	Acarbose	Miglitol		
МОА	 Reversible inhibitors of intestinal α-glucosidases in intestinal brush border cells that are responsible for carbohydrate digestion. Decrease carbohydrate digestion and glucose absorption in small intestine (lower postprandial glucose level). 			
P.K	 No hypoglycemia if used alone Given orally, not absorbed⁵ and taken - just before meals. 			
Uses	 Are effective alone in the earliest stages of impaired glucose tolerance⁶ Are not recommended alone as therapy for moderate to severe hyperglycemia⁷ Most useful in combination with other oral hypoglycemic drugs or with insulin. 			
ADR	• GIT: Flatulence, bloating, diarrhea, abdominal pain.			
C.I	 Irritable bowel syndrome. Inflammatory bowel disorders. Intestinal obstruction 			

present in peripheral tissue, increase the tissues' insulin sensitivity.
 only given once daily despite short half life because even though its plasma level decreases, its effect (configurations changes) that it does to the receptor are long lasting.
 not given to cardiac patients.
 d: drug-drug interaction
 advantage as its effect is in the GIT.
 pre-diabetes
 not given alone if patient is proven to be diabetic

Sodium-glucose transporter 2 inhibitors

Drug	Canagliflozin, Dapagliflozin, Empagliflozin (-gliflozin)				
MOA	 Inhibits SGLT2 in the kidneys→inhibits glucose and Na reabsorption→ this allows excess glucose to be excreted in the urine→ this will reduce blood sugar levels. 				
Uses	 Used with diet and exercise to control high blood sugar in patients with type 2 diabetes. To reduce risk of major adverse cardiovascular events¹ in adults with type 2 diabetes and established cardiovascular disease. 				
ADR	 ★ Urinary tract infections. ★ Yeast infections²(vagina or penis) Increased urination and dry mouth. Thirst Itching (vagina or penis) Fatigue 				

Summary from Dr. slides

Class \ Drug	Mechanism	Mechanism Site of Action		Main ADRs
Sulfonylureas E.g Gliclazide	Stimulates insulin	Pancreatic beta-cells	- Effective - Inexpensive	- Hypoglycemia - Weight gain
Meglitinides E.g Repaglinide	secretion		- Sulfa free	
Biguanides E.g Metformin	Decrease insulin	Liver	- Mild weight loss - No hypoglycemia	- GI symptoms - Lactic Acidosis - Metallic taste
Thiazolidinediones E.g Pioglitazone	resistance	Fat, muscle	- No hypoglycemia	- Hepatotoxicity - Edema - Mild weight gain
Incretins mimetics E.g Dulaglutide	Increase incretin	GI tract	- S.C once a day	-N&V
DPP-4 inhibitors E.g Sitagliptin	Inhibit incretin breakdown		- Orally	- N & abdominal pain
a-Glucosidase E.g Acarbose	Decrease glucose absorption in small intestine		- Low risk	- GI symptoms, flatulence
SGLT-2 inhibitors E.g Dapagliflozin, Canagliflozin	Inhibit renal SGLT-2	Kidney	- Orally - Reduced Na (CV benefits)	- Genital yeast - UTI - Increased Urination

Quiz

Q1- Which of the following classes of oral diabetes drugs is paired most appropriately with its primary mechanism of action?

A. DPP-4 inhibitor—inhibits breakdown of complex carbohydrates.
 B. Sulfonylurea—increases insulin secretion.
 C. Thiazolidinedione—decreases hepatic gluconeogenesis.

Q2- Which of the following statements is characteristic of metformin?

 A. Metformin is inappropriate for initial management of type 2 diabetes.
 B. Metformin decreases hepatic glucose production.

 C. Metformin undergoes significant metabolism via the cytochrome P450 system.

 D. Metformin should not be combined with sulfonylureas or insulin.
 E. Weight gain is a common adverse effect.

Q3- A 64-year-old woman with a history of type 2 diabetes is diagnosed with heart failure. Which of the following medications would be a poor choice for controlling her diabetes? A. Glyburide. B. Nateglinide. C. Pioglitazone. D. Sitagliptin.

Q4- KD is a 69-year-old male with type 2 diabetes and advanced chronic kidney disease. Which of the following diabetes medications is contraindicated in this patient? A. Glipizide. B. Metformin. C. Liraglutide. D.Tolbutamide

Q5- Which of the following drugs for diabetes would be LEAST likely to cause weight gain? A. Glimepiride. B. Liraglutide. C. Pioglitazone. D. Repaglinide.

Q6- Which of the following diabetes medications is most appropriately paired with an adverse effect associated with its use?

A. Canagliflozin—lactic acidosis.
 B. Metformin—urinary tract infections.
 C. Repaglinide—heart failure.
 D. Liraglutide—pancreatitis.

MCO

- 48-years-old male who is obese and he failed to loss his weight with diet and exercises , his blood glucose and lipid is significantly high and has diagnosed with type 2 DM.

Q1- Which drug is the first line of treatment in his case? Q2- What is the M.O.A of that drug? Q3- If the patient drinks alcohol almost daily and he did not tell his doctor that , what is the adverse effect that could be seen in this patient after taking the drug in q1?

Q4- Newly patient who was prediabetes, he is diagnosed now with type 2 diabetes. The medical history relieves that he can not tolerance Sulfasalazine or sulfamethoxazole. What is the drug that can be safe to be used in his case ?

Q5- 45-years-old female with type 2 diabetes, she has history of IBD "Crohn's disease", what is the drug that contraindicated in this case?

	MCQ		SAQ	
	Q1		Q1	Metformin
	Q2	В	Q2	Increases liver,muscle & adipose tissues sensitivity to insulin & increase peripheral glucose utilization (tissue glycolysis)
	Q3			
			Q3	Lactic acidosis
Answers:	Q4			
	05		Q4	
	Q5	В		
	Q6		Q5	α-Glucosidase inhibitors E.g. Acarbose, Miglitol

Thank you for all your love and support.

Good luck future doctors!

Team Leaders:

May Babaeer Zyad Aldosari

This Magnificent Work was Done By:

Joud AlKhalifah Reema AlSerhani

Note writers

Raghad AlKhashan

Nouf AlShammari

Quiz writers

Noura AlMazrou Shahad Alsahil