

drugs used for glaucoma

Hint on ocular toxicity of some drugs

ROUTES OF ADMINISTRATION

Eye drops

Ointments

Injections

PERI-OCULAR INJECTIONS

 Subconjunctival, subtenon, peribulbar, or retrobulbar

For infection of anterior segment and inflammation of uvea

 bypass the conjunctival and corneal epithelium which is good for drugs with low lipid solubility (e.g. penicillins)

steroid and local anesthetics

Local toxicity, tissue injury, globe perforation, optic nerve damage

SYSTEMIC DRUGS

Factor influencing systemic drug penetration into ocular tissue

lipid solubility of the drug: more penetration with high lipid solubility

Protein binding: more effect with low protein binding

Eye inflammation: more penetration with ocular inflammation

OCULAR DRUGS

Autonomic drugs

Antiglaucoma Drugs

Anti-inflammatory drugs

Chemotherapeutics

Local anesthetics

Ocular lubricants

Miotics Mydriatics Cycloplegics

Steroids & NSAIDs

Antibacterial, antifungal, antiviral, antimitotic

AUTONOMIC DRUGS

Parasympathetic Drugs

Constriction of the pupillary sphincter muscle (miosis)

Contraction of the ciliary muscle (accommodation for near vision).

 Increase aqueous outflow through the trabecular meshwork into canal of Schlemm by ciliary muscle contraction

Decrease intraocular pressure

Increase lacrimation
Conjunctival vasodilatation

PARASYMPATHETIC DRUGS

Clinical uses

Drugs	Ocular uses
Acetycholine Carbachol Methacholine	Induction of miosis in surgery Glaucoma
Pilocarpine	In open angle glaucoma
Physostigmine	Glaucoma, accommodative esotropia
Ecothiophate	Glaucoma, accommodative esotropia

CHOLINERGIC ANTAGONISTS

Clinical uses

-To prevent adhesion in uveitis & iritis

-Funduscopic examination of the eye

VIII

-Measurement of refractive error

Non-selective agonists

Mechanism: 1 uveoscleral outflow of aqueous humor

Uses: open angle glaucoma

α₁ agonists e.g. phenylepherine

Mydriasis (without cycloplegia)

-Funduscopic examination of the eye

-Decongestant in minor allergic hyperemia of eye

-To prevent adhesion in uveitis & iritis

ADRENERGIC AGONISTS

α₂ agonists e.g. apraclonidine

Mechanism: \downarrow production of aqueous humor

Uses: glaucoma treatment, Prophylaxis against IOP spiking after glaucoma laser procedures

non-selective: timolol, carteolol

selective: betaxolol (beta 1
"cardioselective")

Mechanism: Act on ciliary body to \downarrow production of aqueous humor

Uses: open angle glaucoma

Advantages can be used in patients with hypertension/ischemic heart disease

Ocular ADRS:- irritation

TREATMENT OF OPEN ANGLE GLAUCOMA (CHRONIC)

Goal is to decrease IOP

Decreasing production of aqueous humor

B- blockers

α₂ agonists Carbonic anhydrase inhibitors

Increasing outflow of aqueous humor

Prostaglandins Adrenergic agonists (non-specific) ↑uveoscleral outflow Parasympathomimetics

CARBONIC ANHYDRASE INHIBITORS

Acetazolamide (oral), Dorzolamide (topical)

Mechanism:- \downarrow production of aqueous humor

Side Effects: myopia, malaise, anorexia, GI upset, headache metabolic acidosis, renal stone,

Contraindications: sulpha allergy, digitalis users, pregnancy

PROSTAGLANDINS

Mechanism: *\Uveoscleral outflow*

Uses: open angle glaucoma

Administration: Topical drops

Side Effects: Iris color change

DRUG THERAPY OF ACUTE ANGLE CLOSURE GLAUCOMA (NARROW ANGLE)

Acute, painful increases of pressure

Is associated with occlusion of the outflow drainage pathway

Emergency situation that require treatment before surgery (Iridectomy)

Oral Acetazolamide

Topical cholinomimetics e.g.: pilocarpine

Dehydrating agents: IV infusion Of hypertonic solution (Mannitol, Glycerol)

Analgesics: pethidine or morphine (for pain)

Glycerol 50% syrup (cause nausea, hyperglycemia)

Mannitol 20% IV (cause fluid overload and not used in heart failure)

Clinical uses

Dehydrate vitreous body which reduce IOP prior to anterior surgical procedures

Used for short term management of acute rise in IOP

CORTICOSTEROIDS

Mechanism:- Inhibition of arachidonic acid release by inhibiting phospholipase A₂

Topical:-prednisolone, dexamethasone, hydrocortisone

Uses: postoperatively, anterior uveitis, severe allergic conjunctivitis, scleritis, prevention and suppression of corneal graft rejection

Systemic:- prednisolone, cortisone

Uses: posterior uveitis, optic neuritis

Ocular ADRS:-Glaucoma, cataract, skin atrophy, secondary infection, delayed wound healing.

e.g. flurbiprofen, diclofenac, ketorolac

Mechanism: inhibition of cyclo-oxygenase

Uses: Flurbiprofen preoperatively to prevent miosis following cataract surgery

Diclofenac for postoperative inflammation

Ketorolac for cystoid macular edema occurring after cataract surgery

Side effects: stinging , sterile corneal melt& perforation

TOXICOLOGY

Digitalis causes chromotopsia with overdose

Chloroquine causes retinopathy

Amiodarone causes optic neuropathy & pigmented deposits of the cornea

Phenothizines cause brown pigmentary deposits in the cornea, conjunctiva & eyelid

Sildenafil Inhibits PDE5 in the corpus cavernosum to achieve penile erection

It also mildly inhibits PDE6 which controls the level of cyclic GMP in the retina→ seeing a bluish haze & causing light sensitivity

Steroids → cataract formation, elevated IOP & glaucoma

Ethambutol → optic neuropathy characterized by gradually progressive central scotomas & vision loss