

Anatomy Team MED 439

The Sensory Tract

CNS Block

Color index:

Don't forget to check the Editing File

Contact us: Anatomy439@gmail.com Content Male slides Female slides Important Doctors notes Extra information, explanation

Objectives

At the end of the lecture, students should be able to:

- Define the meaning of a tract
- Distinguish between the different types of tracts
- Locate the position of each
- Describe the sensory pathway
- Identify the different sensory spinal tracts and their functions
- Identify the course of each of these tracts
- Know some associated lesions regarding the main tracts

Introduction

- The **grey matter** of the spinal cord is completely surrounded by the white matter
- The White matter of the spinal cord consists of Ascending and Descending Nerve Fibers.
- It is divided into **Dorsal, Lateral** & **Ventral** Columns or Funiculi.

White Matter Tracts

- Bundles or **fasciculi of fibers** that occupy more or less definite position in the white matter.
- They have the same Origin, Termination and carry the same Function.
- They are classified into:

Gray matter: Posterior (dorsal)	XCII			 White matter: Posterior (dorsal) columns
horn	(2)	V		- Lateral columns
Lateral horn —				- Central canal
	Y A F	TE D	1	
Anterior (ventral)		And		- Anterior (ventral) columns
norn		N Color		

Short tracts (intersegmental or propriospinal)	Long tracts	Fascicul Fasciculus
Fibers occupy narrow band immediately peripheral to the grey matter (fasciculus proprius) .	Types: 1. Ascending (sensory or afferent) 2. Descending (Motor or efferent)	Dorsal spinocerel (fasciculus Ventral spinocerel
Function: They interconnect adjacent or distant spinal segments And Permit intersegmental coordination	Function: They serve to join the brain to the spinal cord.	Spinothal

Ascending Tracts

Ascending Tracts;

• Carry impulses from pain, thermal, tactile, muscle and joint receptors to the brain.

 Some of this information eventually reaches a conscious level (at the cerebral cortex), while some is destined for **subconscious** centers (**e.g at the cerebellum**).

•Pathways that carry information to a conscious level share certain common characteristics:

• There is a sequence of Three Neurons between the peripheral receptors and the cerebral cortex.

Dr's explosions: ascending =Carry sensations to brain

Neuron

The axons of the **first-order neuron** or primary afferent neuron) enters the spinal cord through the dorsal root of a spinal nerve and its cell body lies in the **dorsal root ganglion**.

Dr's note::

always first order neurons outside the spinal cord: قاعدة ثابتة

The main fiber remains on the ipsilateral side of the cord and terminates in synaptic contact with the **second neuron** which lies either in the **spinal grey matter or in the medulla oblongata of the brain stem.**

The axon of the second order neuron crosses over (decussates) to the opposite side of the CNS and ascends to the **thalamus**, where it terminates.

Dr's note:

Here it's still at the same side in spinal cord or in medulla

Primary somatosensor cortex (S1) Dorsal colum (VP nucleus) nuclei mniscus Dorsal Large dorsal column root avo Spinal cord

The **third-order neuron** has its cell body in the **thalamus**. Its axon passes to the **somatosensory cortex** of the parietal lobe of the cerebral hemisphere.

Three major pathways carry sensory information:

Dorsal Column

Extra:

The dorsal columns are located between the dorsal median sulcus and the dorsal horn. The dorsal columns are comprised of two tracts, incompletely separated by a thin septum: the fasciculus gracilis, situated medially and the fasciculus cuneatus, situated laterally. The tracts carry impulses concerned with proprioception (movement and joint position sense) and discriminative (fine) touch.

Composed of two tracts;

Fasciculus Gracilis (FG) & Fasciculus Cuneatus (FC)

- They Carry the axons of primary afferent neurons that have entered cord through dorsal roots of spinal nerves, from ipsilateral side of the body
- **They are concerned with:**
- 1. Discriminative Touch: Ability to localise accurately the area of the body touched. يعنى إدا عمضت عوني وواحد لمسنى باعرف وين المكان الي لمسنى فيه هذا Discriminative Touch: Ability to localise accurately the area of the body touched. التنخص
- **2. Two Point Discrimination**: To be aware that two points are touched simultaneously even they are close together.
- **3. Proprioception**: from muscles and joints for the movement & knowing the position of different parts of the body

الـProprioceptionزي لما نطلب من شخص انه يرفع رجله وهو مغمض عينه يكون عنده القدره على انه يرجع رجله مكانها على الارض بهدوء وفي المكان صحيح وما يختل اتزانه هو المسؤول عن تنسيق هذي الحركة

Ventral corticospinal tract

Fasciculus Gracilis	Fasciculus Cuneatus	Fasciculus gracilis — — Fasciculus cuneatus — —	Ascending tracts Descending tracts	—— Fasciculus proprius
contains fibers that are received at sacral, lumbar and lower thoracic	contains fibers that are received at upper thoracic and cervical	Dorsal spinocerebellar tract		—— Lissauer's tract —— Lateral corticospinal tract —— Rubrospinal tract
levels. thus, includes those from the lower limb.	levels thus, include those from the upper limb.	Ventral spinocerebellar tract		—— Medial longitudinal fasciculus —— Medullary reticulospinal tract
		Spinothalamic tract		Lateral vestibulospinal tract

Dorsal Column cont.

The medial lemniscus terminates in the Ventral Posterior Nucleus of the **Thalamus** (3rd order neurons), which project to the **somatosensory cortex** (thalamocortical fibers)

The axons of the 2nd order neurons decussate (cross over) in the medulla as Internal Arcuate Fibers and ascend through the brainstem as Medial Lemniscus.

1st order Fibers ascend without interruption where they terminate upon 2nd order neurons in Nucleus Gracilis and Nucleus Cuneatus.

As first order neurons ascends, they stay at the Ipsilateral side

> Team 438: In the case of dorsal column, the 2nd order neuron is found in the medulla oblongata. - Whether to terminate in nucleus gracilis or cuneatus depends on which tract is ascending, each tract terminate in its corresponding nucleus (fasciculus gracilis > nucleus gracilis, fasciculus cuneatus > nucleus cuneatus).

Lesions

Tabes Dorsalis	Subacute Combined Degeneration of the spinal cord	Multiple Sclerosis
 A late manifestation of syphilitic infection on the CNS. Affects the lumbosacral dorsal spinal roots and dorsal columns of the spinal cord. Leads to loss of proprioception which is manifested by a high Step Page and unsteady gait (Sensory Ataxia) Dr note: In tabes Dorsalis patient their muscles is ok but the sensation lost 	 A systemic disease results from B12 deficiency It produces Sensory Ataxia Lateral columns are also affected (combined) causing weak and spastic limbs It is completely recovered by proper treatment with B12. Dr's explanation : When proprioception is effected –> المريض ما يدرك مكان قدمه لو حليقة متزنه المريض ما يدرك مكان قدمه لو حليق مشديده او ما ترجع بطريقة متزنه من المريض and motor (lateral corticospinal) 	 An immune disease affects specifically fasciculus Cuneatus (receives sensory from the upper part of body) of the cervical region. Leads to loss of proprioception in hands and fingers (Asteriognosis) Dr explanation: Asteriognosis is the reverse of steriognosis steriognosis Means your ability to take certain objects when your eyes is close and identify it or like when I give you number of objects while your eyes close and ask you to identify the key you will be able to know it
	Dorsal Column Lateral Corticospinal Tract Anterior Corticospinal Tract	Central: - Fatigue - Cognitive - Dopression - Depression - Dich neuritis - Depression - Diplopia - Anxiety - Unstable mood - Dysphagia Musculoskeletal: - Weakness - Dysphagia Musculoskeletal: - Weakness - Dysphagia Musculoskeletal: - Weakness - Spasms - Ataxia Sensation: - Pain - Hypoesthesias - Pain - Hypoesthesias - Pain - Hypoesthesias - Pain - Incontinence - Diarrhea or constipation - Frequency or

retention

Spinothalamic Tracts

In brain stem, the two tracts constitute the Spinal Lemniscus.

Information is sent to the primary sensory cortex on the opposite side of the body.

Pons corticospinal fibres Medulla Pyramid Spinothalamic tract Ventral white Cervical cord commissure Lumbar cord

Team 438:

At the level of spinal cord: the first order neurons terminate as soon as they enter the spinal cord in an area called Substantia Gelatinosa or Nucleus Proprius, once it terminates the second order nucleus will start and they will cross through the **anterior white commissure** to the contralateral side and then ascend At the level of the medulla: they fuse together forming a single bundle called spinal lemniscus. At the level of Cerebral hemisphere: They terminate in the ventral posterior nucleus of the thalamus.

Types of spinothalamic tracts

Lateral spinothalamic tract

FUNCTION:

• Carries pain & Temperature to thalamus and sensory area of the cerebral cortex.

3 Neurons are involved:

- **Neuron I**: Small cells in the dorsal root ganglia. (First order neurons)
- Neuron II: Cells of substantia gelatinosa of Rolandi in the (contralateral) posterior horn. (2nd order neurons. After 2nd order neurons the fibers decussate then ascend and are called lateral spinothalamic tract)
- Dr's note: after it the crossing happens so when you have pain in your right side the left side of your brain receives the sensation
- **Neuron III**: Cells of (VP) nucleus of the thalamus. (then continue till the somatosensory cortex of the cerebral)

Anterior Spinothalamic Tract

FUNCTION:

• Carries Light, Crude Touch (non discriminative) & Pressure to thalamus and sensory cortex.

3 Neurons are involved:

- **Neuron I**: Medium sized cells in the dorsal root ganglia. Girls doctor: the size of cells is not that important.
- Neuron II: Cells of main sensory nucleus or (Nucleus Proprius). Fibers arising from Substantia Gelatinosa & Nucleus Proprius decussate in the Anterior White Commissure (then ascend as anterior spinothalamic tract)
- **Neuron III**: Cells of VP nucleus of thalamus.

Spinocerebellar Tracts

Spinocerebellar Tracts

The spinocerebellar system consists of a sequence of only two neurons;

- Neuron I: Large cells of dorsal root ganglia.
- Neuron II: Cells of the nucleus dorsalis; Clark's nucleus (column)

Two tracts: Dorsal & Ventral

- Located near the dorsolateral and ventrolateral surfaces of the cord
- Contain axons of the second order neurons
- Carry unconscious information derived from **muscle spindles**, **Golgi tendon organs**, **tactile receptors**, **joints**, **skin and subcutaneous tissue** to the cerebellum for the control of posture and coordination of movements.
- (Cerebellum controls the same side of the body)

Dr's note: There isn't a 3ed order neuron in the Hypothalamus

Posterior Spinocerebellar Tract Ventral (Anterior) Spinocerebellar Tract The cell bodies of the **2nd order neuron** lies in base of the dorsal horn of Present only above level L3 • The cell bodies of 2nd order neuron lie in Clark's column the lumbosacral segments. Axons of the 2nd order neuron cross to opposite side, ascends as far as Axons of 2nd order neuron terminate **ipsilaterally** (uncrossed) in the the midbrain the make a sharp turn caudally and enter the superior . cerebellar cortex by entering through the inferior cerebellar peduncle. cerebellar peduncle. The fibers cross the midline for a second time within cerebellum before Posterior spinocerebellar tract convey sensory information to the same it terminates in the cerebellar cortex. . side of the cerebellum So ventral spinocerebellar tract conveys sensory information to the same side of the cerebellum. Dr's note: no crossing occurs (Joint Position Vibration Pressure) Fasciculus Fasciculu eunoatus Anterior horn motor neurons spinocerei tract I ateral Ventral orticospinal Distal limb spinocerebi tract Rubrospina atoral reticul tract spinothala It ascends Pain, temperatu tract Axial and proximal From leg Ventral limb reticu tract novements Vontra spinothalami It ascends Pressure touch indirectly (due to Distal limb crossing movements

Lesions

Spinothalamic tracts lesion

The spinothalamic tract can be selectively damaged in syringomyelia, in which:

- The central canal become enlarged forming a cavity compressing the adjacent nerve fibers.
- Fibers serving pain and temperature are damaged first as they decussate in the ventral white commissure close to the central canal causing selective loss of pain and temperature in the upper limbs (dissociation sensory loss)
- Light touch and proprioceptive sensation are retained. Why is it retained? Because the Dorsal column is intact
- Joints of the limbs become disorganized without discomfort (Charcot's joint)

Friedreich's ataxia

- An inherited degenerative disease
- Affecting the spinocerebellar tracts
- Leading to incoordination of arms intense tremor wide base reeling gait ataxia
- It begins in childhood
- Wheelchair is bound by 20 years of age

Spinocerebellar tracts lesion

Other Types Of Tracts

Spinotectal Tract* Male Dr: Name & Function IMPORTANT	Spino-olivary Tract* Male Dr: Name & Function IMPORTANT	Spinoreticular Tract* Male Dr: Name & Function IMPORTANT
 Ascends in the anterolateral part, in close association with spinothalamic system. Primary afferents reach dorsal horn through dorsal roots and terminate on 2nd order neurons The cell bodies of 2nd order neuron lie in base of the dorsal horn. Axons of 2nd order neuron cross to opposite side, and project to the periaqueductal gray matter and superior colliculus in the midbrain. Involved in reflexive turning of the head and eyes (spinovisual reflex) toward a point of cutaneous stimulation Dr's note: We use it when there's stimulation need the movement of head ,eyes and neck for example: loud screaming 	Indirect spinocerebellar pathway (spino-olivo-cerebellar) Impulses from the spinal cord are relayed to the cerebellum via inferior olivary nucleus. Conveys sensory information to the cerebellum. Fibers arise at all levels of the spinal cord. Contribute to movement coordination associated primarily with balance. Dr's note:Don't go directly to cerebellum pass medulla first	Originates in the dorsal horn, and ascend in the ventrolateral region of the cord • Contains uncrossed fibers that end in medullary reticular formation • Crossed & uncrossed fibers that terminate in pontine reticular formation, then to brain stem reticular formation finally to the thalamus; that activate the cerebral cortex • Forms part of the ascending reticular activating system. • Involved in perception of dull aching (slow pain) It has been someone sleeping and we touched him the Spinoreticular Tract will activated to wake him up
Corpus callosum Third ventrice Thalamus Internal capsule Unitimal capsule Uniti	Fasciculus gracilis Fasciculus cuneatus Hypothalamospinal tract (tract of Goll) Lateral corricospinal Orsolateral tract (crossed pyramidal) of Lissauer) Rubrospinal tract Anterior spinocerebellar tract Lateral reticulospinal tract Spino-olivary tract Medial reticulospinal tract Spino-olivary tract Olivospinal tract Tectospinal Vestibulospinal tract Tectospinal Vestibulospinal tract Anterior corricospinal Tract (uncrossed pyramidal) tract	Superior collicular Ted nuclear Minimi Mediai iemiscaa Minimi Mediai iemiscaa Minimi Mediai iemiscaa Minimi Mediai iemiscaa Minimi Mediai iemiscaa Minimi Mediai iemiscaa Minimi Mediai iemiscaa Minimi Mediai iemiscaa Minimi Mediai iemiscaa Minimi Minimi Mediai iemiscaa Minimi

MCQ

Q1: Which of the following is a short white matter tract?			
A: fasciculus proprius	B: fasciculus gracilis	C: fasciculus cuneatus	D: fasciculus thalamus
Q2: Pathways that carry information to a conscious level have:			
A: 1 order neurons	B: 2nd order neurons	C: 3 order neurons	D: 4 order neurons
Q3:The internal arcuate fibers ascend through the brainstem as:			
A: lateral lemniscus	B: medial lemniscus	C: spinal lemniscus	D: dorsal lemniscus
Q4:Tabes dorsalis is a late manifestation of which infection?			
A:Meningitis	B:Syphilis	C:Syringomyelia	D:spinal lemniscus
Q5:Multiple sclerosis affects which tract?			
A:fasciculus proprius	B:fasciculus thalamus	C:fasciculus gracilis	D:fasciculus cuneatus
Q6:Spinothalamic tracts send information to primary sensory cortex on the of the body :			
A: Same side	B: Opposite side	C: -	D: -
Answer key:			
1 (A) , 2 (C) , 3 (B) , 4 (B) , 5 (D) , 6 (B)			

MCQ

Q7: In spinothalamic tract, both tracts (anterior and lateral) constitute the In the brain stem:				
A: Spinal Lemniscus	B: Medial Lemniscus	C: Fasciculus gracilis	D: Fasciculus cuneatus	
Q8: In which of the following tracts crossing doesn't occur:				
A: Posterior Spinocerebellar tract	B: Ventral Spinocerebellar tract	C: Lateral Spinothalamic tract	D: Anterior Spinothalamic tract	
Q9: In which of the following tracts crossing occurs twice:				
A: posterior Spinocerebellar tract	B: Ventral Spinocerebellar tract	C: Lateral Spinothalamic tract	D: Anterior Spinothalamic tract	
Q10: People with Friedreich's ataxia are bound to wheelchair by the age of				
A: 10 years	B: 15 years	C: 20 years	D: 25 years	
Q11:The spinothalamic system consists of a sequence of				
A: 1 neuron	B: 2 neurons	C: 3 neurons	D: 4 neurons	
Q12: Which of the following tracts is involved in perception of dull aching				
A: Spino-olivary tract	B: Spinotectal tract	C: Spinocerebellar tract	D: Spinoreticular Tract	
Answer key:				

7(A), 8(A), 9(B), 10(C), 11(C), 12(D)

Q1:Write down the location of the three order neurons between the peripheral receptors and the cerebral cortex?

Q2:The three major pathways carry sensory information are?

Q3:An immune disease affects specifically fasciculus Cuneatus of the cervical region. Leads to Astereognosis Is ?

Q4: What is the function of anterior spinothalamic tract?

Answers

1: 1. First-order neuron (Delivers sensations to the CNS, The cell body is in the dorsal or cranial root ganglion)
 2. Second-order neuron(An interneuron with the cell body in the spinal cord (grey matter) or brain stem (medulla oblongata))
 3. Third-order neuron(Transmits information from the thalamus to the cerebral cortex)

2 : 1. Dorsal (Posterior) column (divided into Gracile & Cuneate fasciculi) 2. Spinocerebellar pathway. 3. Anterolateral pathway (Spinothalamic)

3 : Multiple Sclerosis

4: Carries Light, Crude Touch (non discriminative) & Pressure to thalamus and sensory cortex.

Team leaders Rayan jabaan Abeer Awwad

A special thanks to Mohamed Alguhidan

Reviser Norah Alasheikh

Organizer Shaden Alsaiedan

Team Members

Note taker Asma Alamri

- Alaa Assulmi .
- Albandari Alanazi
- Aljoud Algazlan
- Afnan Almohsen
- Arwa Algahtani
- Aseel Alshehri
- \$}} Asma Alamri
- Bodoor Almubarak
- Deemah Alotaibi •
- Fatimah Saad ٠
- Ghada Alabdi ٠
- Ghaida Alassiry ٠
- Joud Alnujaidi •
- May Barakah •
- Norah Alasheikh
- Nouf Alsubaie ٠
- Raghad Alasiri
- **Raghad Soaeed**
- **Renad Alosaimi** ۰
- Sara Alharbi
- Sarah Almuqati ۰
- Sarah Algahtani
- Shaden Alsaiedan
- Shahad Almezel
- Shayma Alghanoum
- Sumo Alzeer

- Abdullah Alburikan •
- Abdullah Aldosari •
- Abdulaziz Alghuligah ٠
- Abdulaziz Alkraida ٠
- Abdulaziz Alomairy ٠
- Abdulaziz Alrabiah •
- Abdulaziz Alsuhaim ٠
- Abdulrahman Almugren ٠
- ∯∂ Ahmed Alkhayatt
- **Bader Alrayes** .
- **Basel Fakeeha** ٠
- Fahad Alajmi ٠
- Faisal Alotaibi •
- Fayez Altabbaa •
- Feras Algaidi •
- Hadi Alhemsi ٠
- Hesham Alsqabi
- Mohammed Aldehaim ٠
- Mohamed Alguhidan ٠
- Mohammed Beyari •
- Mubarak Alanazi ٠
- Musab Alamri •
- Nawaf Alghamdi ٠
- Osama Alharbi •
- Raed Alnutaifi
- Saad Aldohaim
- Saleh Algarni

