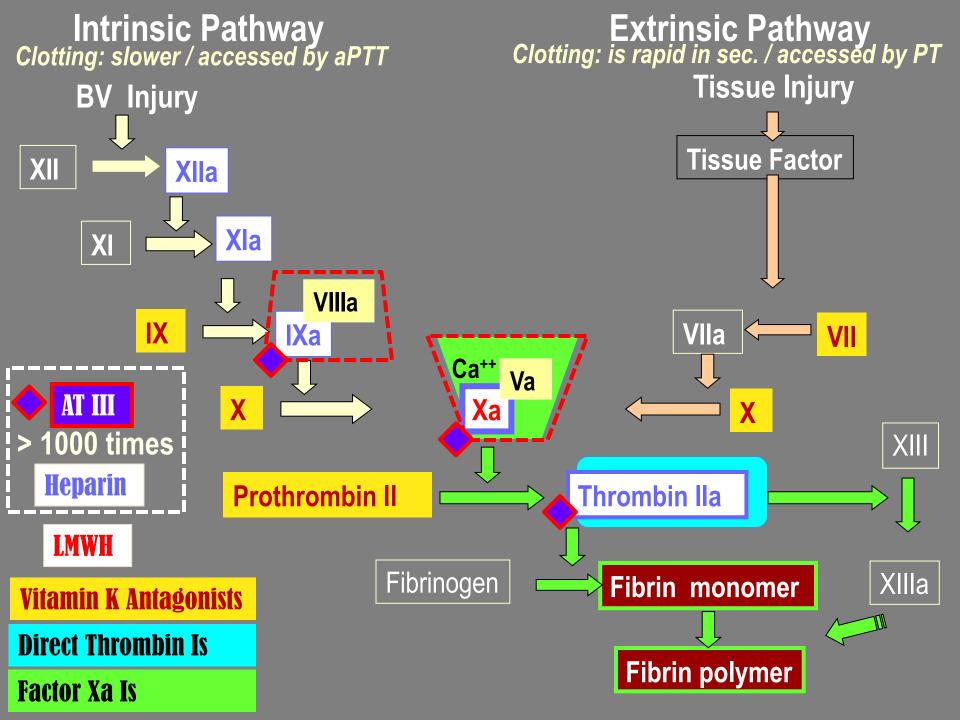

ANTICOLOGICANTS

ANTICACIDANTS

ILOS

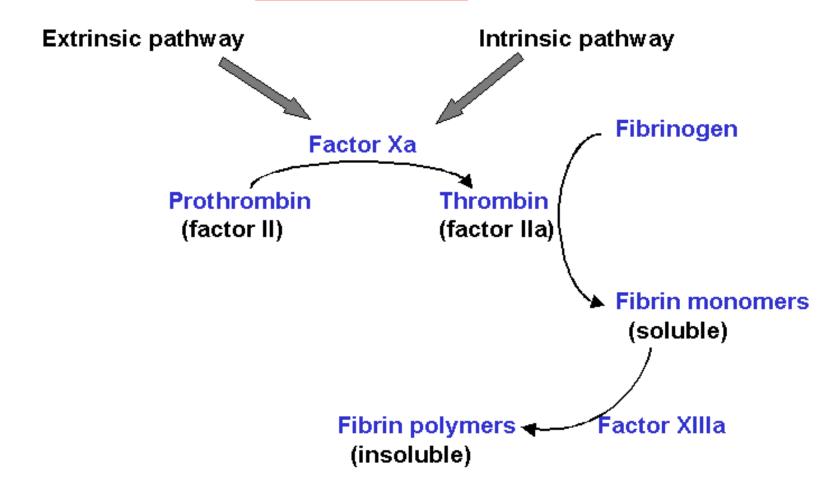
- **Re-visit the coagulation cascade**
- Classify drugs acting as anticoagulants
- **Elaborate on their mechanism of action, correlating that with methods** of monitoring
- Contrast the limitations & benefits of injectable anticoagulants in clinical settings
- Emphasis on the limitations of VKAs & on variables altering or modifying their response.
- **Apply such variability in a clinical scenario.**

Drugs and coagulation


- Anti-coagulants are molecules that prevent blood
 - from clotting. They inhibit the chemical process of formation of the fibrin polymer.
- These include heparin, low molecular weight heparin, coumarins/ warfarin.
- Molecules that do not allow platelets to aggregrate and thus prevent clotting, especially in the arteries, are called anti-platelet agents e.g aspirin and ticlopidine.
- Molecules that disintegrate a pre-formed clot are called fibrinolytic agents. A typical example in this category is the enzyme, streptokinase.

Indication of anti-coagulant

Anticoagulants are indicated:


- In myocardial infarction,
- Deep venous thrombosis,
- peripheral arterial emboli, pulmonary embolism and many other conditions.
- Anticoagulants are also used in blood transfusions, and dialysis procedures.

Coagulation pathways and anticoagulants

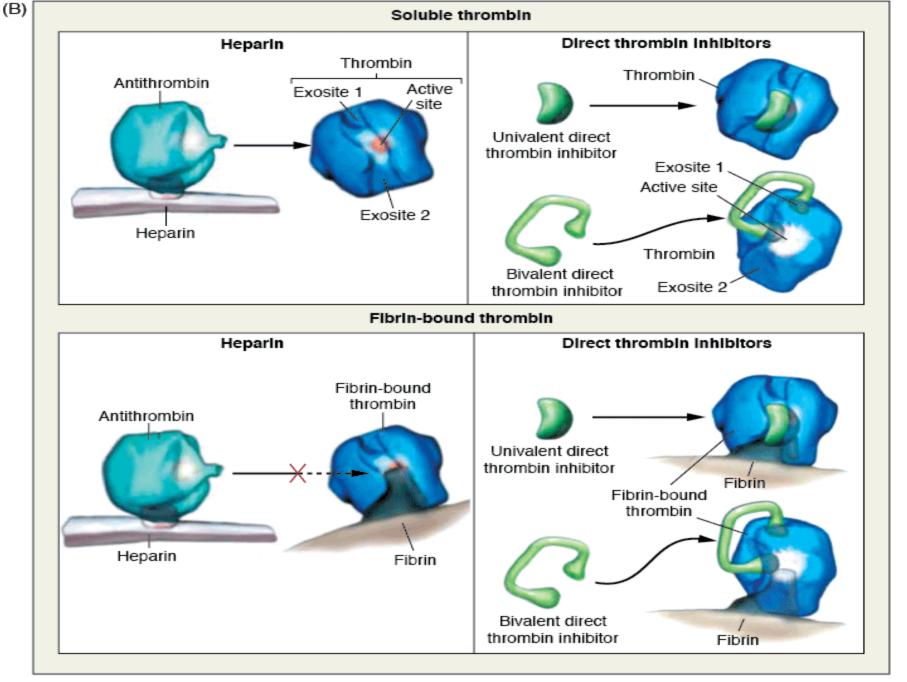
Chemical Process of Clotting

Fibrin Formation

ANICOAGULANIS VENOUS THROMBOSIS

Parenteral Anticoagulants

Oral Anticoagulants

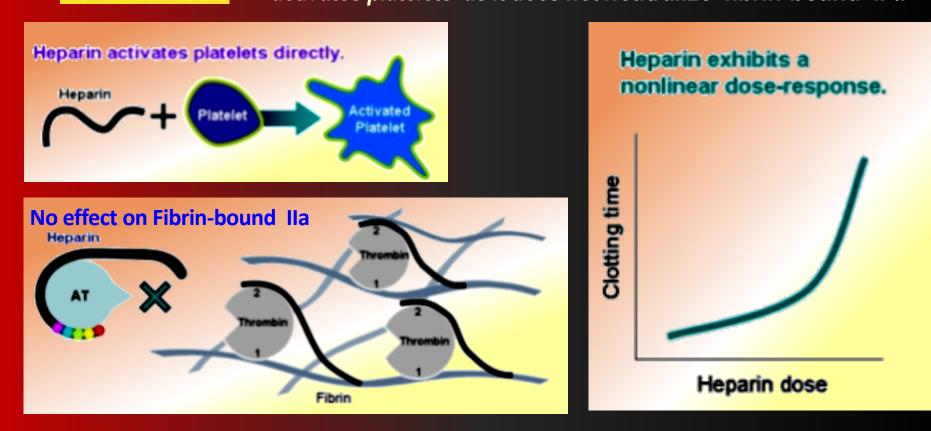

UFH	LMWH	Direct Thrombin Is	Factor Xa Is	Vitamin K Antagonists
3000-30000	< 8000 > Xa	ll a	Pentasaccharide X a	Coumarins; Warfarin
	Enoxaparin Dalteparin	Bivaluridin <i>R Is</i> Lepirudin <i>IR Is</i>	<i>Indirect Is</i> Fondaparinux	> 40 times potency that Dicumarol
		Argatroban <i>R Is</i> Dabigatran <i>R Is</i>	Rivaroxaban <i>Direct I</i> s	
XIIa, XIa, I	Xa, Xa, Ila	II, VII, IX & X		
Inactivati	011 Of Coag u	Decrease Synthesis		
Or CT (2-3	aPTT (1.5 - 2 times norma	Slow / Latency / Variable Monitor by PT (2 times) INR (2.5)		
	Protamine Su / Fresh blood	Antidote; Vit. K₁ infusion +/ Fresh blood + Needs de novo synthesis		

Anti-thrombin III

- Anti-thrombin III: It inactivates thrombin and other coagulation factors (IXa, Xa, XIa and XIIa) by forming complex with these factors. Heparin like molecules enhances these interactions.
- Protein C and S: these are vitamin K dependent proteins that slow the coagulation cascade by inactivating factor Va and VIIIa.

Heparin mechanism of action

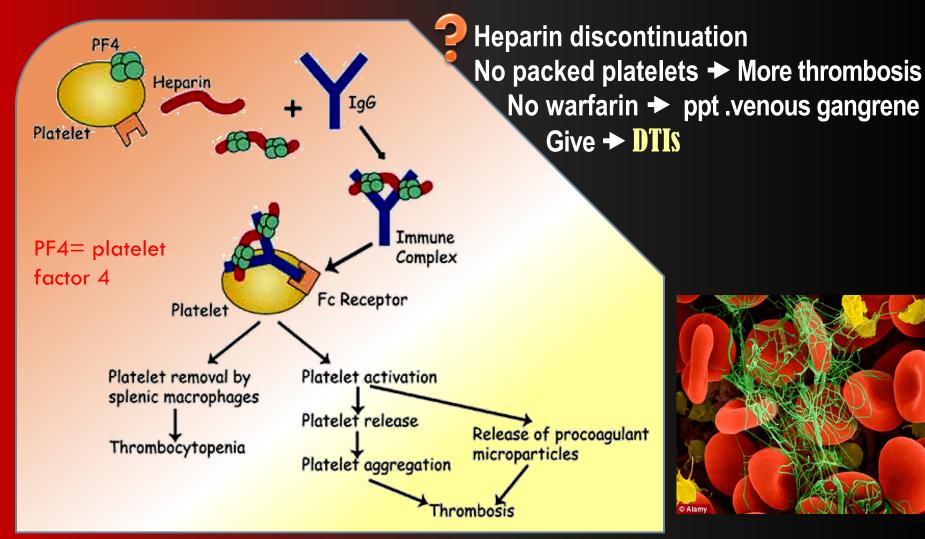
- The anti-coagulant effect of heparin is mediated via anti-thrombin III.
- Anti-thrombin III inactivate thrombin (essential for clot formation) and other serine proteases (clotting factors) e.g VIIa, IXa and particularly Xa.
- In the absence of heparin this incativation is slow, heparine acting is a co-factor accelerate the reaction by 1000-fold.

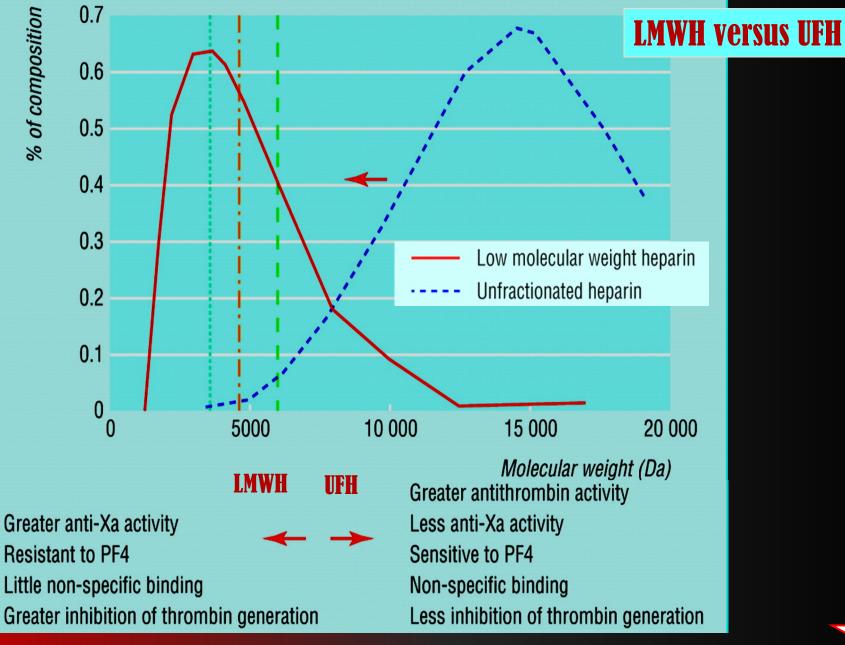

Source: Fuster V, Walsh RA, Harrington RA: Hurst's The Heart, 13th Edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Infractionated heparin (UFH LIMITATIONS No predictable anticoagulant effects: inter-patient & intra-patient variability

in response to a given dosage *rects*: inter-patient & intra-patient variability


Low bioavailability > binds to plasma proteins, endothelium & macrophages
Re-thrombosis > activates platelets as it does not neutralize fibrin-bound II a



ANTICCACULANTS

Heparin Induced Thrombocytopenia (HIT): in 4% pts. on heparin, latency 5-10 dys. after 1st exposure or 2-3 dys. after re-exposures +V enous > Arterial thombosis

UF heparin and LMW Heparin

The theoretical pharmacologic advantages of LMWH over UFH arise from the preferential binding ratio to factor Xa over thrombin.

LMWH (Enoxaparin , Dalteparin) have:

less plasma protein binding, less platelet activation and lower risk of rethrombosis and thrombocytopenia., Good bioavaialibility More predictable response

ANTICOAGULANTS

♣ Predictability of anticoagulant response i.e. little inter-patient and intrapatient variability in response to a given dosage. without the need for laboratory monitoring

Bioavailability: as it hardly binds to plasma proteins, endothelium & macrophages

Incidence of thrombocytopenia; as it seldom sensitive to PF4

Incidence of bleeding tendency; + effect AT III & + platelet interactions

Much better tolerability:

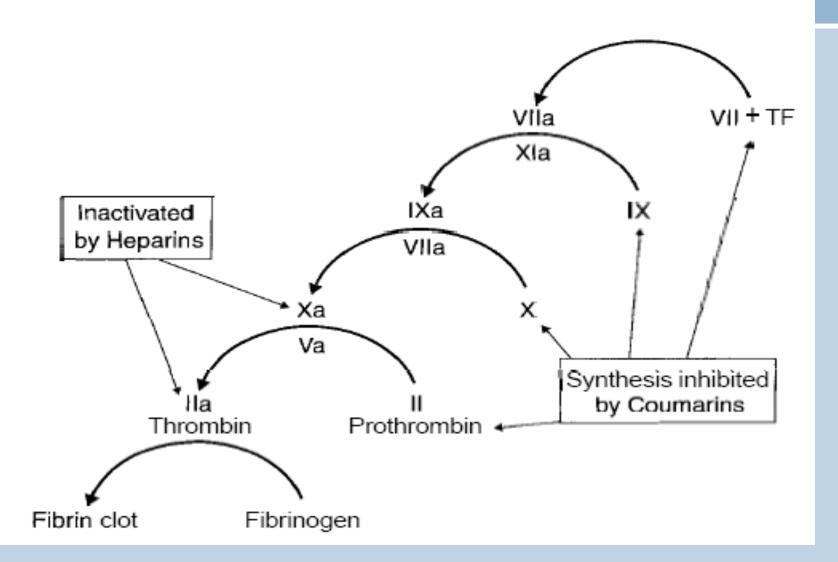
given sub. cut.


Interpretent the frequency of administration due to longer duration of action

need for regular monitoring

Outside hospital settings

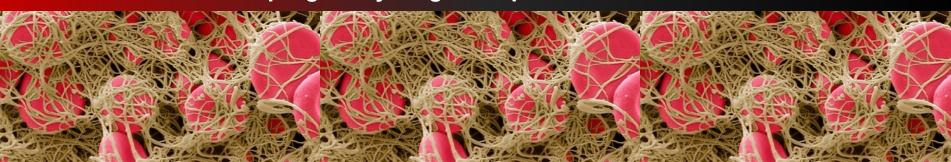
ANTICCAGULANTS


VKAs

Precursors of factors II, VII, IX & X require carboxylation of their glutamic a. residues to allow them to bind to phospholipid surfaces. This is provided by Vit. K as it changes from its oxidized to its reduced form. Instantaneously, the reduced Vit K has to recycle back to oxidized form by Vit K epoxide reductase. This enzyme is blocked by VKAs \rightarrow losing the coagulation factors the ability to function.

Mechanism of Action of Warfarin

- Inhibits synthesis of Vitamin Kdependent coagulation factors II, VII, IX, & X as well as anticoagulant proteins C & S
- Does not have an effect on alreadysynthesized coagulation factors; therefore, the therapeutic effects are not seen until these factors are depleted
 3-4 days until effect is seen


Heparin and warfarin actions

Wide variation in drug response

- Has narrow therapeutic window, So any change in that level can be hazardous.
- **Slow onset of action, so not in given in emergency conditions**
- ♣Polymorphisms in CYT P450 isoforms that metabolizes warfarin → adds to its non predictable response → liability to toxicities or under use.
- A Numerous food- & drug-drug interactions + liability to toxicities or under use.
- Contraindicated in pregnancy + give heparin or LMWH instead

1. Vitamin K deficiency; a- Inadequate diet; malnutrition, dieting, decreased GI absorption....

2. Impaired synthesis of clotting factors; a. In hepatocellular disorders; (hepatitis; infective or chronic alcoholism ... etc.)

3. Increased catabolism of clotting factors; In hypermetabolic states; as in fever, thyrotoxicosis

Decreased plasma protein binding;
 ↑ elimination of free drug & shortening of its t1/2. as pts with nephrotic syndrome (proteinuria)

2. Decreased catabolism of clotting factors; Hypothyroidism

3. Hereditary resistance to oral anticoagulants

DRUGS MODULATING RESPONSE TO VKAS

- Inhibition of Vit. K synthesis by intestinal flora; oral antibiotics
 Inhibition of Vit K absorption; liquid paraffin
- 3. Decrease in drug metabolism by microsomal enzyme inhibitors; chloramphenicol, & cimetidine
- 4. Displacment of the drug from protein binding sites; phenylbutazone & salicylates
- 5. Co-administration of drugs that increase bleeding tendency by; inhibiting platelet function; NSAIDs inhibiting coagulation factors; heparin

Inhibition of drug absorption from GIT; cholystyramine, colestipol
 Increase in synthesis of clotting factors; Vit K, oral contraceptives
 Increase in drug metabolism by microsomal enzyme inducers;
 Carbamazepine; barbiturates, rifampicin

Summary of Heparin and wrafarin

Feature	Heparin(s)	Warfarin (Coumarins)
Chemical Nature	Large polysaccharide, water-soluble	Small molecule, lipid-soluble derivatives of vitamin K
Kinetics	Given parenterally (IV, /SC), hepatic and reticuloendothelial elimination, half-life = 2 h, no placental access	Given orally, 98% protein bound, PO, liver metabolism, half-life = 30+ h, placental access
Mechanism	↑ Activity of antithrombin III, resulting in the inactivation of factors IIa and Xa. Actions <i>in vivo</i> and <i>in vitro</i> .	 ↓ Hepatic synthesis of vitamin K-dependent factors II, VII, IX, X — cournarins prevent γ-carboxylation; no effect on factors already present. In vivo effects only.
Monitoring	Partial thromboplastin time (PTT)	Prothrombin time (PT);INR

Table VII-1-1. Properties of Heparin and Warfarin (Coumarins)

Antagonist	Protamine sulfate—chemical antagonism, fast onset	Vitamin K–↑ cofactor synthesis, slow onset; fresh frozen plasma—fast	
Uses Rapid anticoagulation (intensive) for thromboses, emboli, unstable angina, disseminated intravascular coagulation (DIC), open-heart surgery, etc.		Longer-term anticoagulation (controlled) for thromboses, emboli, post-MI, heart valve damage, atrial arrhythmias, etc.	
Toxicity Bleeding, osteoporosis, heparin-induced thrombocytopenia (HIT), hypersensitivity		Bleeding, skin necrosis (if low protein C), drug interactions, teratogenic (bone dysmorphogenesis)	

Table VII-1-1. Properties of Heparin and Warfarin (Coumarins) (continued)

ANTICOLOGICANTS G

