

THE ESOPHAGUSESOPHAGEAL MOTILITY & GERD

Maha Saja, M.B.B.S, MSc Physiology, PhD

Office no. 8, Level 3, College of Medicine.

msaja@ksu.edu.sa

OBJECTIVES

- Discuss the role of the mouth in digestion.
- Define mastication and explain how is it brought about.
- Discuss the components of the mastication "chewing" reflex.
- Define swallowing and discuss its stages.
- Explain the changes that occur in each stage of swallowing as well as the nervous input and output of each stage.
- Discuss the types of movement that occur in the esophagus.
- Discuss the role of the lower esophageal sphincter and how is it controlled.
- Define gastroesophageal reflux disease (GERD) and achalasia and the pathophysiologic mechanisms underlying their occurrence.

INTRODUCTION

Our first stop in our journey with the burger is the *mouth* & esophagus

(Sherwood. Human Physiology: From cells to Systems, 7th ed.)

THE MOUTH

- What is the role of the mouth in digestion?
 - Mechanical digestion.
 - Chemical digestion.
- What is the process of cutting and grinding food in the mouth called?

Mastication "chewing"

 What are the muscles involved in chewing and what is their innervation?

MASTICATION "CHEWING"

- Why is it important to chew food?
- How is it achieved?

Chewing reflex

THE MOUTH

<u>Digestion in the mouth</u>

- Minimal.
- Mechanical breakdown of food.
- Carbohydrate digestion starts due to salivary amylase.
- Secretion in the mouth
 - Receives secretions from salivary glands.
- Absorption in the mouth
 - Not much

DEGLUTITION "SWALLOWING"

- Swallowing is the entire process of moving food from mouth through esophagus and into the stomach.
- Swallowing is a complicated process... why?
- The process of <u>swallowing can</u> <u>be divided into 3 stages</u>:
 - Voluntary stage.
 - Pharyngeal stage.
 - Esophageal stage.

DEGLUTITION "SWALLOWING"

Looking at the video, can you identify the processes happening to allow swallowing?

STAGES OF SWALLOWING

- 1. Voluntary stage \rightarrow initiates swallowing and moves bolus from mouth to pharynx.
- 2. Pharyngeal stage \rightarrow involuntary and moves food bolus through pharynx and into esophagus.
- 3. Esophageal stage \rightarrow involuntary and moves bolus from esophagus and into the stomach

VOLUNTARY STAGE

When food is ready for swallowing \rightarrow voluntarily squeezed or rolled into pharynx.

PHARYNGEAL STAGE

When food bolus enters posterior mouth & pharynx

Stimulates sensory nerve endings "**tonsillar pillars**" being the most sensitive

Sensory input

ESOPHAGEAL STAGE

- Conducts food to stomach.
- Achieved by peristalsis.
- Two types of peristaltic movement in the esophagus;
 - 1. **Primary** peristalsis.
 - 2. Secondary peristalsis.

ESOPHAGEAL STAGE

PRIMARY PERISTALSIS

- Continuation of the peristaltic wave that began in the pharynx.
- It takes 8-10 sec.
- If food bolus reaches stomach → job is done!
- When peristalsis approaches the stomach it is preceded by a wave of relaxation → receptive relaxation of LES
- If it fails to deliver the food bolus to stomach → secondary peristalsis

ESOPHAGEAL STAGE

SECONDARY PERISTALSIS

- food bolus gets stuck in the esophagus → secondary peristalsis.
- Initiated at the site of distention of the esophagus by the food bolus.
- Continue until food bolus is delivered into stomach.

LOWER ESOPHAGEAL SPHINCTER

- 3 cm above the junction of esophagus with stomach, circular muscle fibers function as a sphincter → LES.
- The LES is normally kept tonically constricted.
- Why is it important?

Can you name factors that can modify the tone of the LES?

DISORDERS OF THE ESOPHAGUS

ACHALASIA

- LES fails to relax properly in response to swallowing.
- Functional obstruction.
- What do you think would happen?
- Degeneration of the myenteric plexus, loss of inhibitory neurons.

GERD

- LES fails to constrict properly OR Loss of lower esophageal sphincter tone.
- What do you think would happen?

Achalasia

Clinical

- Dysphagia
- Odynophagia
- Regurgitation of undigested food

Esophagus

"Bird-Beak" appearance

Narrowing of the lower esophageal sphincter (LES)

ESOPHAGEAL SECRETIONS

- Entirely mucus.
- What is its importance?
 - ✓ Lubrication.
 - Protection against acidic juices of the stomach.

Not much absorption occurs in the esophagus.

Physiology of the Esophagus - Swallowing

- *Voluntary phase*---tongue pushes food to back of oral cavity
- Involuntary phase----pharyngeal stage
 - breathing stops & airways are closed
 - soft palate & uvula are lifted to close off nasopharynx
 - vocal cords close
 - epiglottis is bent over airway as larynx is lifted
 - controlled by autonomic nervous system

Esophageal stage

- Peristalsis pushes food down
 - circular fibers behind bolus
 - longitudinal fibers in front of bolus shorten the distance of travel
- Travel time is 4-8 seconds for solids and 1 sec for liquids
- Lower sphincter relaxes as food approaches

REFERENCES

- Sherwood. Human Physiology: From cells to Systems, 7th ed.
- Guyton & Hall Textbook of Medical Physiology. 13th ed.
- Mackenna & Callander. Illustrated Physiology. 6th ed.

Thank you

