

THE PANCREAS PANCREATIC SECRETION

Maha Saja, M.B.B.S, MSc Physiology, PhD

Office no. 8, Level 3, College of Medicine.

msaja@ksu.edu.sa

OBJECTIVES

- Discuss the functional anatomy of the pancreas, its division into endocrine and exocrine organ and the role of each.
- Describe the role of the pancreas in digestion.
- Discuss the components of pancreatic juice and their role in digestion.
- List the proteolytic enzymes synthesized by the pancreas and their target.
- Discuss the mechanism of secretion of bicarbonate-rich secretions by the pancreas.
- Describe the mechanism of activation of pancreatic enzymes.
- Discuss the hormonal & neural mechanisms regulating pancreatic secretion.
- Name and describe the phases of pancreatic secretion.

INTRODUCTION

Chyme has arrived into duodenum

Today we will discuss the pancreas

There it will be exposed to various secretions from biliary system and pancreas

FUNCTIONAL ANATOMY OF PANCREAS

FUNCTIONAL ANATOMY OF PANCREAS

FIGURE 40-18 (A) Extrahepatic bile passages, gall bladder, and pancreatic ducts. (B) Entry of bile duct and pancreatic duct into the hepatopancreatic ampulla, which opens into the duodenum.

THE PANCREAS

What is the difference between endocrine and exocrine glands?

THE PANCREAS

(http://2010.igem.org/wiki/index.php?title=Team:ESBS-Strasbourg/proteolux/application/cancer&oldid=209211of-pancreas)

THE PANCREAS

(http://2010.igem.org/wiki/index.php?title=Team:ESBS-Strasbourg/proteolux/application/cancer&oldid=209211of-pancreas)

THE ROLE OF THE PANCREAS

- Digest dietary nutrients.
- Neutralize duodenal acidity arriving from stomach.
- Why is it important to neutralize acid arriving at the duodenum from the stomach?

PANCREATIC SECRETION

• What are the constituents of pancreatic secretion "juice"?

ACINAR CELL SECRETION

Acinar cell

Centrocinar cel

Duct cell

- Secrete a protein-rich (digestive enzymes) secretion in an isotonic plasma-like fluid.
- Constitute 25% of total pancreatic secretion.

Stimulated by CCK & Ach.

- Secreted as proenzymes (inactive form) 1. which get activated in the lumen of the intestine.
- The same cells secrete a substance 2. "trypsin inhibitor".

HCO₃

HCO3T/CIT

exchange

Digestive

enzymes

ACTIVATION OF PANCREATIC ENZYMES

Table 5.1 Activation of enzyme precursors in the small intestine

Enterokinase is an enzyme that is secreted by brush border of small intestine and activate trypsinogen.

DUCTAL CELL SECRETION

- Secretes a HCO₃⁻ -rich fluid that alkalinizes & hydrates the protein-rich secretion of acinar cells ([HCO3] =145mEq/L).
- Constitute 75% of pancreatic secretion.
- Stimulated by Secretin.
- Effects of Secretin are potentiated by CCK & Ach.

Fig. 5.4 Secretory unit showing the cellular locations of the different secretions.

MECHANISM OF DUCTAL CELL SECRETION

Blood side

Luminal side

EFFECT OF FLOW RATE ON PANCREATIC SECRETION

Figure 8-22 Relationship between the composition of pancreatic juice and the pancreatic flow rate. The ionic composition of pancreatic juice is compared with that of plasma.

REGULATION OF PANCREATIC SECRETION

REGULATION OF PANCREATIC SECRETION

CHOLECYSTOKININ (CCK)

- A 33-amino acid polypeptide.
- Secreted by enteroendocrine cells "*I cells*" in duodenum & upper jujenum.
- Stimulated by the presence of fat and protein degradation products (proteoses & peptides).
- CCK $\rightarrow \uparrow$ pancreatic digestive enzyme secretion.

SECRETIN

- 27 amino acid polypeptide.
- Secreted by "S cells" in the duodenum & upper jujenum.
- When luminal pH<4.5
- HCO₃⁻ concentration in pancreatic secretion = 145mmol/L

PHASES OF PANCREATIC SECRETION

PHASES OF PANCREATIC SECRETION

Cephalic phase

- Through vagus nerve.
- 20% of pancreatic enzymes

Gastric phase

- Through vagus nerve.
- <mark>5-10</mark> %

Intestinal phase

- Through hormonal stimulation (secretin & CCK).
- <mark>70-75</mark> %

PHASES OF PANCREATIC SECRETION

Table 43-2 The Three Phases of Pancreatic Secretion

Phase	Stimulant	Regulatory Pathway	Percentage of Maximum Enzyme Secretion
Cephalic	Sight Smell Taste Mastication	Vagal pathways	25%
Gastric	Distention Gastrin?	Vagal-cholinergic	10%-20%
Intestinal	Amino acids Fatty acids H+	Cholecystokinin Secretin Enteropancreatic reflexes	50%-80%

SUMMARY

×.,

TABLE 8-2. Summary of Gastrointestinal Hormones						
Hormone	Hormone Family	Site of Secretion	Stimuli for Secretion	Actions		
Gastrin	Gastrin-CCK	G cells of the stomach	Small peptides and amino acids Distention of the stomach Vagal stimulation (GRP)	↑ Gastric H ⁺ secretion Stimulates growth of gastric mucosa		
Cholecystokinin (CCK)	Gastrin-CCK	I cells of the duodenum and jejunum	Small peptides and amino acids Fatty acids	 ↑ Pancreatic enzyme secretion ↑ Pancreatic HCO₃ secretion Stimulates contraction of the gallbladder and relaxation of the sphincter of Oddi Stimulates growth of the exocrine pancreas and gallbladder Inhibits gastric emptying 		
Secretin	Secretin-glucagon	S cells of the duodenum	H ⁺ in the duodenum Fatty acids in the duodenum	 ↑ Pancreatic HCO₃ secretion ↑ Biliary HCO₃ secretion ↓ Gastric H⁺ secretion Inhibits trophic effect of gastrin on gastric mucosa 		
Gastric inhibitory peptide (GIP)	Secretin-glucagon	Duodenum and jejunum	Fatty acids Amino acids Oral glucose	 ↑ Insulin secretion from pancreatic β cells ↓ Gastric H⁺ secretion 		

SUMMARY OF DIGESTION OF FOOD TYPES

DIGESTION OF CARBOHYDRATES FROM MOUTH TO DUODENUM Carbohydrates in diet What are sucrose & lactose made of?? Sucrose = glucose + fructoseLactose = glucose + galactose Most (2/3) Remaining Plant Are disaccharides; polysaccharides Sucrose (table sugar) 20-40% "Starch" Lactose (milk sugar) Mouth Oligosaccharides Glycogen Salivary Starch amylase Maltose Cellulose "fiber"-not digested by humans **50-80%** Duodenum **Dietary carbohydrates** small Starch pancreatic glucose amylase Oligosaccharides polymers Maltose **Absorbed form; Monosaccharides**

DIGESTION OF PROTEINS FROM MOUTH TO DUODENUM

END OF PANCREAS

MIGRATORY MOTOR COMPLEXES

WHAT HAPPENS TO OUR GI SYSTEM IN BETWEEN MEALS?

- We understood that the GI tract motility is involved in mixing and moving food along the tract in an orad to caudad direction.
- But what happens when there is no food in the system? During fasting for example?
- The intestine is relatively quiescent during fasting but exhibit a certain pattern of electric and motor activity

Interdigestive myoelectric complexes "**Migrating Motor Complexes (MMC)**"

MIGRATING MOTOR COMPLEXES

- *MMC* is a term that describes the rhythmic contractions of the small intestine during the fasting state.
- Starts at the stomach and moves down to terminal ilium.
- At intervals of <u>90-120 min</u>.
- Consists of four main phases:
 - 1. Prolonged quiescent period.
 - 2. A period of increasing AP and contractility.
 - 3. A period of peak electrical and mechanical activity.
 - 4. A period of declining activity.

MIGRATING MOTOR COMPLEXES

- These are though to clear the intestine of its contents.
- Allows particles > 2mm to pass from stomach to duodenum.
- Motilin is thought to play a role in their generation.

Figure 41-6 Mechanical activity in the fasting and fed states. Shown are records of intraluminal pressure along the small intestine of a conscious dog. Before feeding (*left side*), the pattern is one of MMCs. Feeding triggers a switch to a different pattern, characterized by both segmental contractions that churn the contents and peristaltic contractions that propel the contents along the small intestine. (*Data from Itoh Z*, *Sekiguchi T: Scand J Gastroenteral Suppl 1983; 82:121-134.*)

REFERENCES

- Sherwood. Human Physiology: From cells to Systems, 7th ed.
- Guyton & Hall Textbook of Medical Physiology. 13th ed.
- Linda Costanzo Physiology, 4th ed.
- Walter F. Boron, Emile L. Boulpaep- Medical Physiology, Updated Edition.

Thank you

