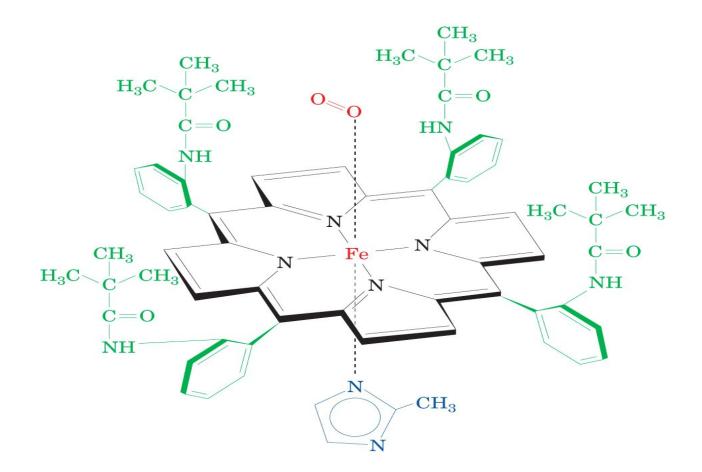
Structure and function of hemoglobin

Objectives

By the end of this lecture, the students should be able to know:

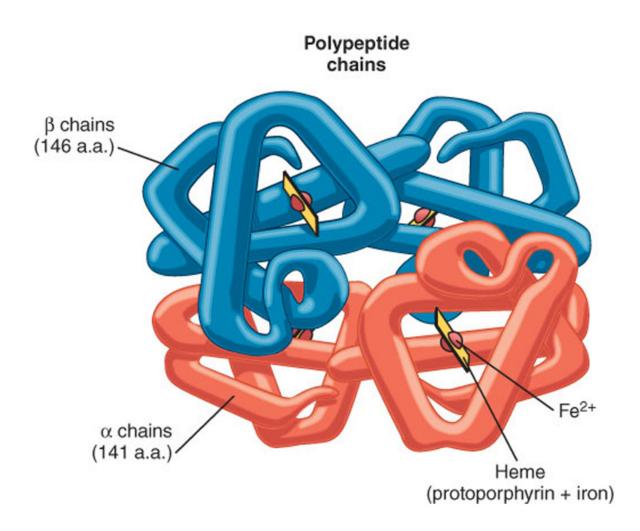

- the structure and function of hemoglobin.
- the factors affecting oxygen binding to hemoglobin.
- examples of normal and abnormal hemoglobin structures.

Hemoglobin (Hb)

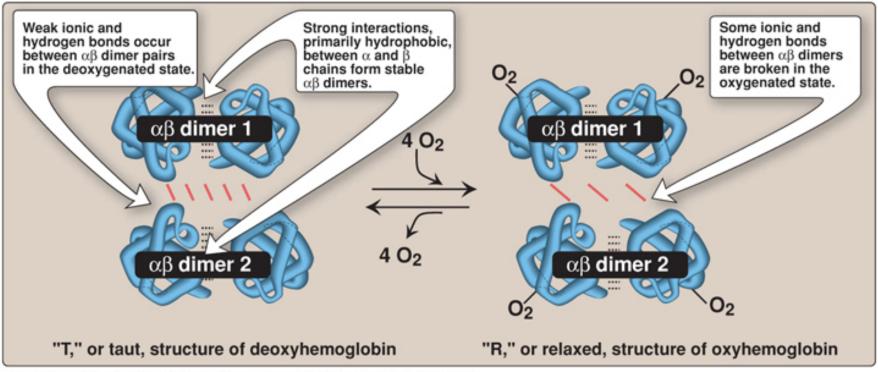
- A hemeprotein found only in red blood cells
- Oxygen transport function
- Contains heme as prosthetic group
- Heme reversibly binds to oxygen

The heme group

- A complex of protoporphyrin IX and ferrous iron (Fe²⁺)
- Fe²⁺ is present in the center of the heme
- Fe²⁺ binds to four nitrogen atoms of the porphyrin ring
- Forms two additional bonds with:
 - Histidine residue of globin chain
 - Oxygen

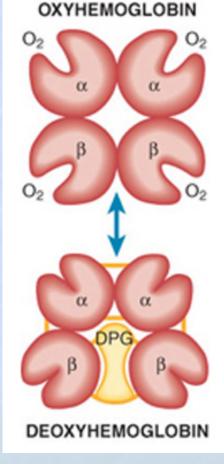

The heme group: Fe^{2+} porphyrin complex with bound O_2

Types of Hb

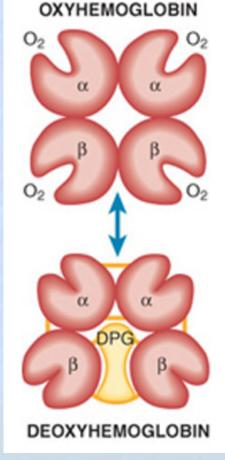

	Form	Chain composition		Fraction of total hemoglobin	
	HbA	$\alpha_2\beta_2$		90%	
	HbF	$\alpha_2 \gamma_2$		<2%	
	HbA ₂	$\alpha_2\delta_2$		2%–5%	
	HbA _{1c}	$\alpha_2\beta_2$ -gluco	se	3%–9%	
4	Abnormal:			arboxy Hb	
			Met Hb		
				Sulf Hb	

Hemoglobin A (HbA)

- Major Hb in adults
- Composed of four polypetide chains:
 - Two α and two β chains
- Contains two dimers of αβ subunits
- Held together by non-covalent interactions
- Each chain is a subunit with a heme group in the center that carries oxygen
- A Hb molecule contains 4 heme groups and carries 4 moelcules of O₂


HbA structure

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins


T-form of Hb

- The deoxy form of Hb
 Taut form
 The movement of dimers is constrained
- Low-oxygen-affinity form

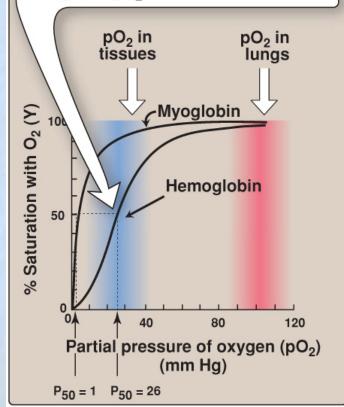
R-form of Hb

- The oxygenated form of Hb
 Relaxed form
 The dimers have more freedom of movement
- High-oxygen-affinity form

Hemoglobin function

- Carries oxygen from the lungs to tissues
- Carries carbon dioxide from tissues back to the lungs
- Normal level (g/dL):
 - Males: 14-16
 - Females: 13-15

Factors affecting oxygen binding

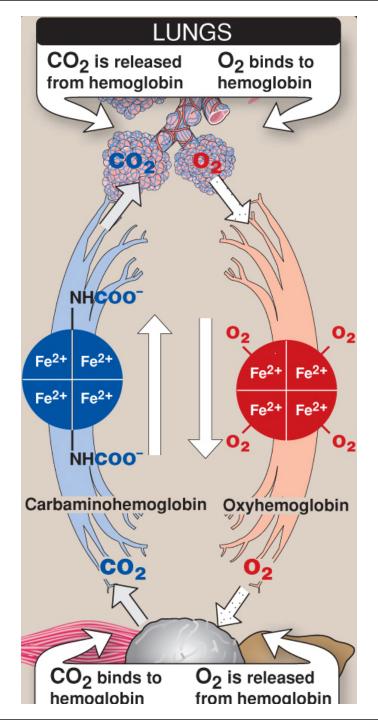

Four allosteric effectors:

- pO₂ (partial oxygen pressure)
- pH of the environment
- pCO₂ (partial carbon dioxide pressure)
- Availability of 2,3-bisphosphoglycerate

Oxygen Dissociation Curve

- The curve is sigmoidal
- Indicates cooperation of subunits in O₂ binding
- Binding of O₂ to one heme group increases O₂ affinity of others
- Heme-heme interaction

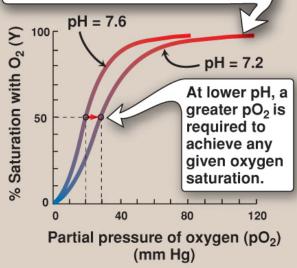
The oxygen dissociation curve for Hb is steepest at the oxygen concentrations that occur in the tissues. This permits oxygen delivery to respond to small changes in pO_2 .



Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

P₅₀

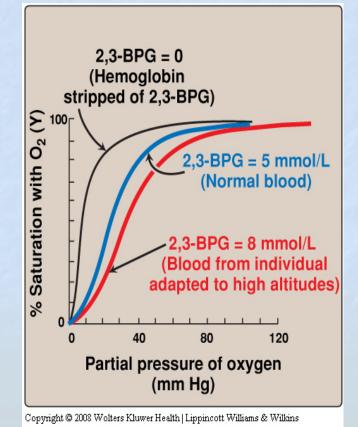
Indicates affinity of Hb to O₂


- P₅₀(mm Hg): the pressure at which Hb is 50% saturated with O₂
- High affinity \rightarrow slow unloading of O₂
- **Low affinity** \rightarrow fast unloading of O₂
- Lung pO_2 is 100 mm \rightarrow Hb saturation 100%
- **_** Tissue pO_2 is 40 mm \rightarrow Hb saturation reduces
- Hence O₂ is delivered to tissues

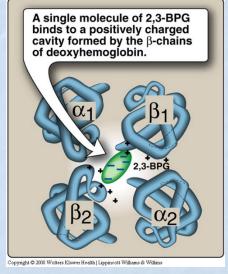
The Bohr effect

- It is the shift of the ODC to the right in response to an increase in pCO2 or a decrease in pH
- Effect of pH and pCO₂ on:
 - Oxygenation of Hb in the lungs
 - Deoxygenation in tissues
- Tissues have lower pH (acidic) than lungs
- Due to proton generation (two reactions):
 - $\Box CO_2 + H_2 O \Longrightarrow H_2 CO_3$
 - $\blacksquare H_2CO_3 \implies HCO_3^- + H^+$
- Protons reduce O₂ affinity of Hb

Decrease in pH results in decreased oxygen affinity of hemoglobin and, therefore, a shift to the right in the oxygen dissociation curve.


opyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

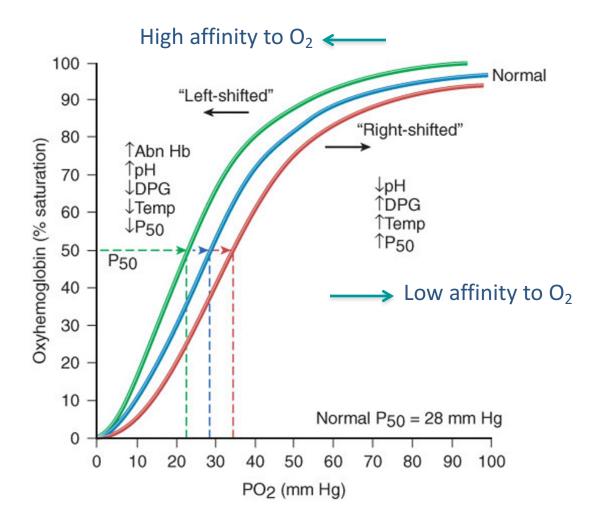
The Bohr Effect


- Causing easier O₂ release into the tissues
- The free Hb binds to two protons
- Protons are released and react with $HCO^3 to$ form CO_2 gas ($HCO_3^- + H^+ \rightarrow CO_2 + H_2O$)
- The proton-poor Hb now has greater affinity for O₂ (in lungs)
- The Bohr effect removes insoluble CO₂ from blood stream
- Produces soluble bicarbonate

Availability of 2,3 bisphosphoglycerate

- Binds to deoxy-hb and stabilizes the T-form
- When oxygen binds to Hb, BPG is released

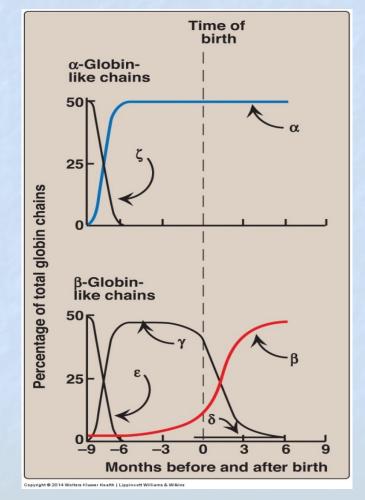
At high altitudes: -RBC number increases -Hb conc. increases -BPG increases


High altitude and O₂ affinity

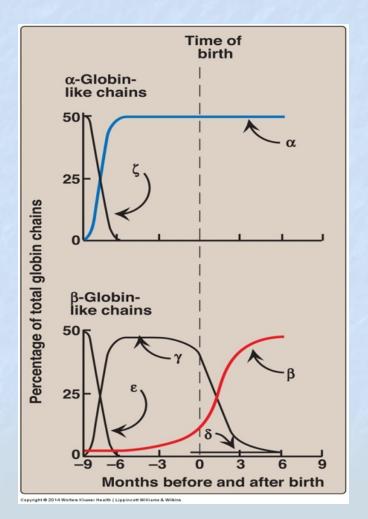
In hypoxia and high altitude

- 2,3 BPG levels rise
- This decreases O₂ affinity of Hb
- Thus increases O₂ delivery to tissues

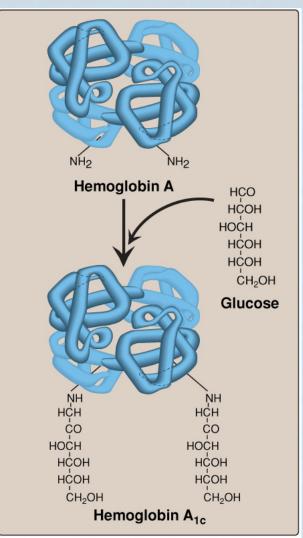
High O₂ affinity


- High O₂ affinity is due to:
- Alkalosis
- High levels of Hb F
- Multiple transfusion of 2,3 DPG-depleted blood

Copyright © 2009 F. A. Davis Company www.fadavis.com


Fetal Hemoglobin (HbF)

- Major hemoglobin found in the fetus and newborn
- Tetramer with two α and two γ chains
- Higher affinity for O₂ than HBA
- Transfers O₂ from maternal to fetal circulation across placenta


HbA₂

- Appears shortly before birth.
- Constitutes ~2% of total Hb
- Composed of two α and two δ globin chains

HbA_{1c}

- HbA undergoes nonenzymatic glycosylation
- Glycosylation depends on plasma glucose levels
- HbA1c levels are high in patients with diabetes mellitus

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

Abnormal Hbs

Unable to transport O₂ due to abnormal structure

- Carboxy-Hb: CO replaces O₂ and binds 220X tighter than O₂ (in smokers)
- Met-Hb: Contains oxidized Fe³⁺ (~2%) that cannot carry O₂
- Sulf-HB: Forms due to high sulfur levels in blood (irreversible reaction)

Reference

Lippincott's Illustrated Reviews Biochemistry: Unit I, Chapter 3, Pages 25 -42.