PRACTICAL HAEMOGLOBINOPATHIES

Dr. Osamah T. Khojah, MBBS, Ms. Med, Ms. Sc, KSUF, IFCAP, CPHQ

Assistant Professor & Consultant
Program Director of Clinical Pathology
Department of Pathology — Hematology Unit
asd@ksu.edu.sa, 0555485892

Golden Rules to Evaluate Hemoglobin Electrophoresis

- 1) You must know the CBC results (RBC count, Hb, MCV, MCH, RDW & Plt).
- 2) Peripheral blood film might be useful (target, sickle, pencil, rhomboidal, golf).
- 3) Different methods have their own issues (gel: alkaline or acid, HPLC & capillary electrophoresis)
- 4) Family history and molecular tests are critical in difficult cases and to confirm the diagnosis.
- 5) As a physician, do not under estimate the medical history and clinical examination.

FIGURE 14-3 Schematic representation of relative mobilities of some abnormal haemoglobins. Cellulose acetate electrophoresis, pH 8.5.

Peak name	Calibrated area %	Area %	Retention time (min)	Peak area
P1		0.2	0.81	3314
F	23.8*		1.12	397 418
P2		3.1	1.33	53 378
P3		2.6	1.71	44 107
Ao		39.7	2.48	683 561
A2	1.8*		3.61	34 884
S – window		15.5	4.41	267 188
C – window		13.9	5.11	239 583

Total area: 1723 434

F Concentration = 23.8*%

A2 Concentration = 1.8*%

*Values outside of expected ranges

Analysis comments:

FIGURE 14-7 A mixture of haemoglobins separated by HPLC. From left to right the peaks are: injection artefact, post-translational modified haemoglobin F (double peak), haemoglobin F (pink), glycated haemoglobin A, other post-translationally modified haemoglobin A, haemoglobin S, post-translationally modified haemoglobin C (two very small peaks) and haemoglobin C.

Parameter	Iron deficiency anemia	α-thalassemia minor	β-thalassemia minor
MCV		į.	+
RDW	1	Normal	Normal
RBCs		Normal	Normal
Peripheral smear	Microcytosis, hypochromia Pencil cell	Target cells	Target cells
Serum iron studies	↓ Iron & ferritin † TIBC	Normal/† iron & ferritin (RBC turnover)	Normal/† iron & ferritin (RBC turnover)
Response to iron supplementation	† Hemoglobin	No improvement	No improvement
Hemoglobin electrophoresis	Normal	Normal	† Hemoglobin A2

MCV = mean corpuscular volume; RBC = red blood cell; RDW = red cell distribution width; TIBC = total iron-binding capacity.

TABLE 14-5

RESULTS OF LABORATORY INVESTIGATIONS IN INTERACTIONS OF HAEMOGLOBIN S AND α OR β Thalassaemia in adults

	MCV	% S	% A	% A ₂	% F
AS	N	35-38	62-65	<3.5	<1
SS	N	88-93	0	<3.5	5-10
S/β ⁰ thalassaemia	L	88-93	0	>3.5	5-10
S/β+ thalassaemia	L	50-93	3-30	>3.5	1-10
S/HPFH	N	65-80	0	<3.5	20-35
AS/α+ thalassaemia	N/L	28-35	62-70	<3.5	<1
AS/α° thalassaemia	L	20-30	68-78	<3.5	<1
SS/α thalassaemia	N/L	88–93	0	<3.5	1–10

HPFH, hereditary persistence of fetal haemoglobin; L, low; MCV, mean cell volume; N, normal.

Golden Rules to Evaluate Hemoglobin Electrophoresis

- 6) Are all normal hemoglobin variants present? And if present, are they in normal amount?
- 7) Beta thalassemia trait has a higher Hb A2 (>3.6) & beta thalassemia major has a very high Hb F (>80%).
- 8) Is there any abnormal Hb? What is the percentage?
- 9) Sickle cell trait has 35% 45% Hb S. If it is >45%, it is a sickle cell disease (when high Hb A2 then likely S/beta thal).
- 10) Alpha thalassemia reduced other abnormal Hb level, in trait state.

Heamatology Unit

Hb Electrophoresis

Hospital No.: QC Hb AFSC CONTROL-

ID : Hb AFSC CONTROL-2

Hb Electrophoresis

Fractions	%	Ref. %	
Hb A	51.3	46.7 - 56.9	
Hb F	21.4	17.4 - 22.4	
Hb S	18.3	17.3 - 22.3	
Hb A2	2.3	2.1 - 3.3	
Hb C	6.7	4.6 - 7.0	

Heamatology Unit

Hb Electrophoresis

Hb Electrophoresis

Fractions	%	Ref. %	
Hb A	96.7	96.8 - 97.8	
Hb F	0.5	=< 2.0	<
Hb A2	2.8	1.5 - 3.5	

Heamatology Unit

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hb F

Hospital No.:

921107

Sample No

54

ID: 063761

Date: 09/05/2010

Beta thalassemia major (B0/B0).

There is NO Hb A.

Fractions

%

Ref. %

Hb F

98.5

Hb A2

100

1.5

Comment:

28/3/2010

60

MCV 73

NRBC 34

Heamatology Unit
Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.:

233095

Sample No

20

ID: 063478

Hb S

Date: 17/04/2010

RBC = 2.8 (L).

Hb=7.2(L).

MCV = 72 (L).

MCH= 22 (L).

RDW= 16 (H).

20

40

60

80

Plt= 340 (N).

Sickle cell disease, likely (S/beta0) + HPFH.

PBF might show target & NRBCs.

100

Hb F

Hb S

Hb A2

Fractions

120

140

%

14.7

80.5

4.8

Heamatology Unit

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.:

594729

Sample No

37

ID: 064199

Hb S

Date: 27/06/2010

RBC = 2.8 (L).

Hb=7.2 (L).

MCV = 83 (N).

MCH=29(N).

RDW = 16 (H).

Plt = 340 (N).

Sickle cell disease, likely (S/S). Pt likely on Hydroxyurea (HU, elevated Hb F).

Fractions	%	Ref. %	
Hb F	6.5		
Hb S	89.9		
Hb A2	3.6		

Heamatology Unit

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Hospital No.:

913628

Sample No

34

ID: 063511

Hb S

Date: 19/04/2010

RBC = 2.8 (L).

Hb=7.2(L).

MCV = 72 (L).

MCH= 22 (L).

RDW= 16 (H).

Plt = 340 (N).

Sickle cell disease, likely (S/beta thal). Pt has blood Tx + HU and PBF might show target & NRBCs.

Ref. %

Fractions

100

8.7

Hb A Hb F

60

4.9

Hb S

80.1

Hb A2

6.3

Comment:

Homo 3790015

120

sickle cell

Heamatology Unit

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

1.1

Hb A2

Heamatology Unit

Hb Electrophoresis

INSTRUMENT ID: KKUH: 24509

Beta Thalassaemia Major

Fractions	%	Ref. %
Hb A	73.9	
Hb S zone	22.6	
Hb A2	3.5	

Sickle cell trait with likely alpha thalassemia. Family and molecular studies to confirm.

Comment : Solubility Test: Positive (+ve)

MRN.: 00-94-65-29

ACCESSION:011832204545A

Depart. K MED Clinic

Date: 19

19/Nov/18

RBC= 2.8 (L). Hb= 7.2 (L). MCV= 82 (N). MCH= 27 (N). RDW= 16 (H). Plt= 340 (N).

Fractions	%	Ref. %
Hb F or Hb variant	23.2	
Hb S zone	74.6	
Hb A2	2.2	

Comment: Solubility Test: Positive (+ve)

- Sickle cell disease, (S/S) + HPFH.
- (normal MCV, MCH & Hb A2). High Hb F might protect from crisis.
- Confirm by family & molecular.

Name	%	Normal Values %
нь а	95.5<	96.8 - 97.8
Hb F or Hb variant	0.8>	=< 0.5
Hb A2	3.7 >	2.2 - 3.2

Normal results even with slight elevated Hb A2 (NOT beta thalassemia trait). Family and molecular studies to confirm.

Comments

SOLUBILITY TEST

WBC: 3.1. 1 RBC: 4.4 Hb: 125 MCV: 84.9 MCH: 28.4 RBW: 13.7 PH: 336 Signature

