

Objectives

The structure and function of hemoglobin

- The factors affecting oxygen binding to hemoglobin
- Examples of normal and abnormal hemoglobin structures

Normal Hemoglobin

We call them normal because they can bind to oxygen

Form Dr.Sumbul: You have to know the compositions and the fraction for all of them	Chain Composition	Fraction of Total Hemoglobin
HbA	$\alpha_2^{\beta_2}$	90%
HbA1c	$\alpha_2 \beta_2 - Glucose$	3% - 9%
HbF F = Fetal	$\alpha_2 \gamma_2$	<2%

Abnormal Hemoglobin

They can't bind to oxygen (For example Met-Hb and Sulf-Hb), or they can't release oxygen (For example Carboxy-Hb)

The following are unable to transport oxygen due to abnormal structure

Structure of Hemoglobin A (HbA)

) It is the **major** Hb in adults

- Composed of 4 polypeptide chains:
- 2α chains and 2β chains

)Contains 2 dimers of $\alpha\beta$ subunits, held together by noncovalent interactions

Each chain is a subunit with a heme group in the center that carries oxygen

A hemoglobin molecule contains 4 heme groups and carries 4 molecules of O2 4 O2 molecules = 8 oxygen atoms

Figure Comments: 439 Respiratory Block There are two types of bonding in the HbA structure:

- Intra-dimer bonding: strong bonds between two subunits (between α and β) (hydrophobic bond)
- Inter-dimer bonding: weak bonds between two dimers (between $\alpha\beta$ and $\alpha\beta$)

Forms of Hemoglobin

T- Form Found in tissues		R- Form Found in lung	
	Deoxy form of Hb When there is NO oxygen bound to it	Oxygenated form of Hb	
"Taut" or "Tense" form The movement of dimers is constrained		Relaxed form	
		Dimers have more freedom of movement	
	Affinity in general means how much strongly the Hb holding on the Oxygen molecule, can the Hb unload the oxygen in periphery or not?		

Low oxygen affinity form Low affinity leads to release O2

High oxygen affinity form High affinity makes the Hb hold on the O2 and can't unload it (can't release it)

Abundant 2,3-DPG or also known as 2,3-BPG found in the structure (see figure) The function: Stabilize the T-Form and important in the delivery of oxygen to peripheral

Hemoglobin Function

- Hemoglobin carries oxygen from the lungs to tissues (The major function)
- Hemoglobin carries carbon dioxide (In form of carbaminohemoglobin) and protons from tissues back to the lung
- Normal level of hemoglobin (g/dL)
 - Male: 14-16 (g/dL)
 - Female: 13-15 (g/dL) (Menstrual cycle is the reason that female has less Hemoglobin than Male)

Factors Affecting Oxygen Binding

The ability of hemoglobin to reversibly bind to oxygen is due to four allosteric effectors: (Allosteric factors are going to bind to hemoglobin and modify O2 binding capacity):

pO₂ (partial oxygen pressure) through heme-heme interactions (How much O₂ are present?)

(partial CO, pressure)

Availability of 2,3bisphosphoglycerate (also known as 2,3- diphosphoglycerate) Important to stabilize the deoxyhemoglobin

Allosteric effectors: Their interaction at one site on the hemoglobin molecule affects the binding of oxygen to heme groups at other sites on the molecule.

Oxygen Dissociation Curve

- The curve is **sigmoidal** in shape (S shaped curve), It indicates cooperation of subunits in O2 binding.
- The shape of the curve has a lag phase initially and a **steep** phase which indicates the presence of cooperative binding.
- Cooperative binding means the binding of the first ٠ molecule facilitate the binding for the second molecule.
- 4 molecules of O_2 binding to hemoglobin = 100% saturated, but if 3 molecules of O₂ binding to hemoglobin = 75% saturated and so on
- Heme-heme interaction: Binding of O₂ to one ۲ heme group increases O₂ affinity of others

(means that the binding of an oxygen molecule at one heme group increases the oxygen affinity of the remaining heme groups in the same hemoglobin).

What is P_{50} ?

- P_{50} (mmHg): it is the partial O₂ pressure at which Hb is 50% saturated with O_2 .
- It indicates affinity of Hb to O₂.
 - **High** affinity \rightarrow **slow** unloading of O₂
 - **Low** affinity \rightarrow **fast** unloading of O_2 لأن لما يكون عندنا الـ PO قليل فنحتاج أن الهيمو قلوبين يعطينا الأوكسجين اللي معه

When lung partial pressure of O_2 is 100 mmHg \rightarrow Hb saturation is 100%

When tissue partial pressure of O_2 is 40 mmHg \rightarrow Hb saturation reduces, hence O_2 is delivered to tissue.

يعنى باختصار اللي يحتاج تعرفونه من هالصورة أن الـ Hb ياخذ

The ability of hemoglobin to reversibly bind oxygen is affected by the pO₂ (through heme-heme interactions as described above), the pH of the environment, the partial pressure of carbon dioxide (pCO₂) and the availability of 2,3-bisphosphoglycerate. These are collectively called allosteric ("other site") effectors, because their interaction at one site on the hemoglobin molecule affects the binding of oxygen to heme groups at other sites on the molecule.

oxygen-dissociation curve for hemoglobin is sigmoidal in shape (see Figure 3.5), indicating that the subunits cooperate in binding oxygen. Cooperative binding of oxygen by the four subunits of hemoglobin means that the binding of an oxygen molecule at one heme group increases the oxygen affinity of the remaining heme groups in the same hemoglobin tetramer (Figure 3.6). This effect is referred to as heme-heme interaction (see below). Although it is more difficult for the first oxygen molecule to bind to hemoglobin, the subsequent binding of oxygen occurs with high affinity, as shown by the steep upward curve in the region near 20–30 mmHg (see Figure 3.5).

The Bohr Effect

The effect of pH and PCO, on affinity of hemoglobin to oxygen

 \bigcirc

Decrease in pH results in decreased oxygen affinity of hemoglobin and, therefore, a shift to the right in the oxygen-dissociation curve.

It is the shift of the ODC "oxygen dissociation curve" to **the right** in response to an increase in pCO₂ or a decrease in pH.

(pH decreases because the tissues are actively metabolizing and releasing CO₂, and CO₂ reacts with water to make carbonic acid by help of carbonic anhydrase, after that the carbonic acid dissociates to bicarbonate and hydrogen)

It describes the Effect of pH (Hydrogen ions) and pCO₂ on: $(\bigcirc$

- Oxygenation of Hb in the lungs.
- Deoxygenation in tissues.
 - Affinity is showing by saturations, if the curve shifts to the right that means the affinity is reduced and lead to unload (release) the oxygen

In simple the Bohr effect shows how the production of CO₂ leads to increase the production of protons (Hydrogens) that lowers the affinity between the Hb and O_2 (so increase the release of O_2 to the tissues)

In the Lung

Protons are released and react with HCO₃⁻ to form

 $HCO_3^- + H^+ \longrightarrow CO_3 + H_3O_3$ CO_{2} gas:

 PO_2 is high, so the Hb that leave the lung is bind to O_2 and we call it Oxyhemoglobin.

- The proton-poor Hb now (in the lungs) has greater affinity for O₂.
- The Bohr effect removes insoluble CO₂ from blood stream, and Produces soluble bicarbonate.

In the Tissues

• **Tissues** have lower pH (acidic) than lungs due to proton generation (two reactions):

 $CO_2 + H_2O \leftrightarrow H_2CO_2 \leftrightarrow HCO_2^- + H_+$

Tissues are releasing CO₂ which bind to Hb and make it become (Carbaminohemoglobin)

- Protons reduce O₂ affinity of Hb causing easier O₂ release (unload) into the tissues.
- The free Hb binds to two protons.

Availability of 2,3-Bisphosphoglycerate

It is molecule produces in RBCs during the glycolytic pathway

The function: it goes and sets between the two beta chains and stabilizes the deoxyhemoglobin structure (Facilitates the releasing of O2)

When oxygen binds to Hb, BPG is released.

BPG Binds to deoxy-hb and stabilizes the T-form.

When does 2,3-BPG become zero? When the blood stored for long time, that lead to decrease the amount of 2,3-BPG.. And if the patient takes multiple transfusions from that blood it will be not rich in 2,3-BPG that leads to increase the affinity between O_2 and Hb (Called O_2 trapped) so the O_2 will not deliver to the tissues.. However the patient needs 12-24 hours to makeup 2,3-BPG then start working

High altitude and O2 affinity

In hypoxia and high altitude:

2,3 BPG levels↑

 $\downarrow 0_2$ affinity of Hb

 $\uparrow 0_2$ delivery to tissues

Other hemoglobin forms

In the first curve you just need to know in the 1st trimester (the first 3 months of pregnancy) the major form of globins chains are zeta chains not the alpha chains, but in the 2nd trimester the alpha chains increase and becomes the major form. In the second curve the gamma chains start to appear in the second trimester and becomes the major form until the birth, after the birth the beta chains become the major form.

ŃН НСН СО

носн

нсон нсон сн₂он HCH CO

носн нсон нсон

Hemoglobin A_{1c}

CH₂OH

TypesHbFHbA2HbA1cStructure
(All Tetramer)Tetramer with two α and two
(gamma) y chainsComposed of two α and two
(delta) § globin chainsTwo α and two β-Glucose

Found	Major hemoglobin found in the fetus and newborn.	Appears shortly before birth.	High in patients with diabetes mellitus.	β like chains β like chains 25 0 0 0 0 0 0 0 0
Deference	 Higher affinity for O₂ than HbA Transfers O₂ from maternal to fetal circulation across placenta 	Constitutes ~2% of total Hb	 it's HbA undergoes non-enzymatic glycosylation In other word the reaction will happen by Presence of HbA with glucose in blood. Glycosylation depends on plasma glucose levels 	Hemoglobin A Hemoglobin A HoCH HoCH HoCH HoCH HoCH HoCH HoCH HoC

Hemoglobin

Function	 Carries oxygen from the lungs to tissue Carries carbon dioxide from tissues back to the lungs 	
Types	Normal Abnormal 1. HbA : 2α. 2B 1. Carboxy Hb 2. HbA2: 2α.2δ 1. Carboxy Hb 3. HbF: 2α .2γ 2. Met Hb 4. HbA1c: 2α. 2B-glucose 3. Sulf Hb	
Normal level	 Males (14-16) Females (13-15) 1. pO₂ (partial oxygen pressure) 2. pH of the environment 3. pCO₂ (partial carbon dioxide pressure) 4. availability of 2,3-bisphosphoglycerate the shift of the oxygen dissociation curve to the right in response to an increase in pCO₂ or a decrease in pH 1. High affinity to O₂ 2. increase in abnormal Hb & pH 3. decrease in DPG, temperature & p₅₀ 1. low affinity to O₂ 2. increase in DPG, temperature & p₅₀ 	
Factors affecting O ₂ binding		
The bohr effect is		
If the curve shifts to the left		
If the curve shifts to the right		

1- Which of the following is NOT bound to the heme group of hemogle	obin?
---	-------

A- Histidine	B- Nitrogen	C- Oxygen	D- Sulfur	
2- Which of the following is a feature of R-form of hemoglobin?				
A- movement of dimer is constrained	B- Low oxygen affinity	C- Abundant 2,3-BPG	D- Oxygenated form of Hb	
3- Which of the following is NOT an allosteric effector?				
A- pH of environment	B- pO ₂	С- рСО	D- Availability of 2,3- BPG	
4- Which of the following is irreversible?				
A-Sulf Hb	B- Met Hb	C-Carboxy Hb	D-None of the above	
5-: HbA ₂ is composed of ?				

A- Two	α and two δ globin chains.	B- Two α and two γ chains.	C-Four α globin chains	D- Two α and two β chains
6-Ali is patient with hypoxia went to visit his uncle in Abha, what do you expect to find?				
A- BPG	\downarrow	B- O_2 delivery to tissues \downarrow	C-O ₂ affinity ↓	D-A&C
Answers key				
1-D	2- D 3- C	4-A 5-A	6- C	

1- What are the factors affecting O₂ binding?

- pO_2
- pCO₂
- pH of the environment
- Availability of 2,3-Bisphosphoglycerate

2- Enumerate the factors that cause Left shift of the Oxygen Dissociation Curve

- Inc. pH, Alkalosis, dec. Protons
- Dec. Temperature
- Dec. P₅₀
 Dec. 2,3-BPG
- Abnormal Hb
- High levels of HbF

3- What's the function of Hemoglobin?

Carries oxygen from the lungs to tissues and carbon dioxide from tissues back to the lungs

Resources Click on the book to download the resource

Reviser

Abdulaziz Alghuligah

NoteTakers

Renad Alhomaidi

Faisal Alomari

Organizer

Hind Almotywea

Members

Special thanks to Fahad AlAjmi for designing our team's logo.