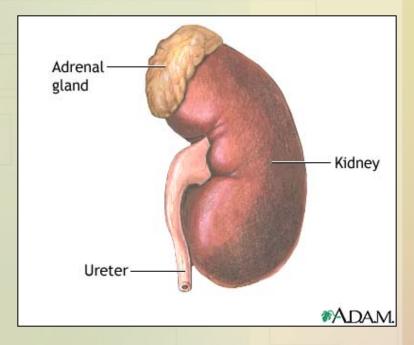
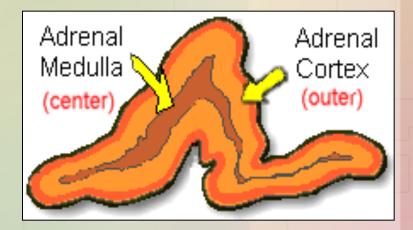
Biochemistry of Cushing Syndrome

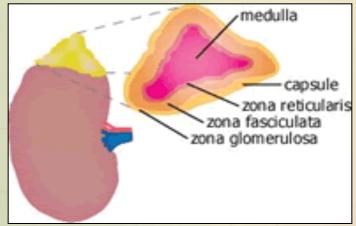

Endocrine Block

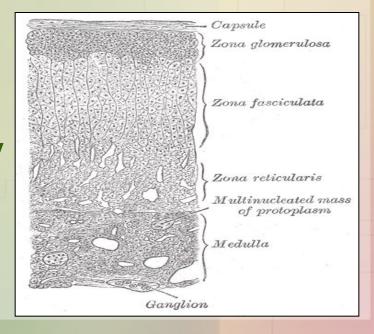
Objectives

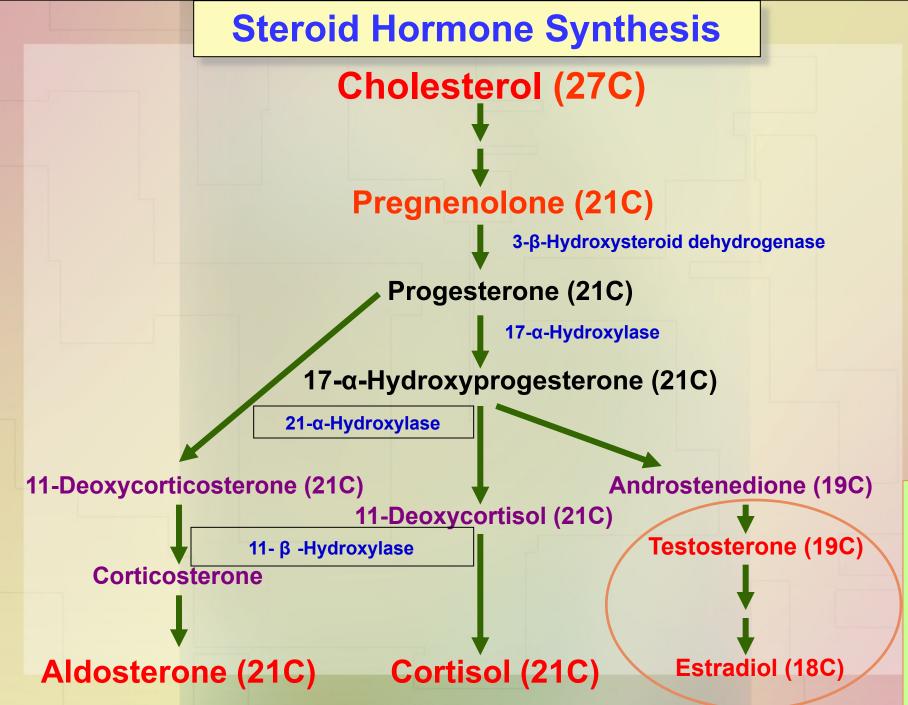
- To identify different causes of Cushing's syndrome
- To understand the diagnostic algorithm for Cushing's syndrome
- To understand the interpretation of laboratory and radiological tests of Cushing's syndrome
- To identify the importance of radiological investigations for diagnosis of Cushing's syndrome.


ANATOMICALLY:

 The adrenal gland is situated on the anteriosuperior aspect of the kidney

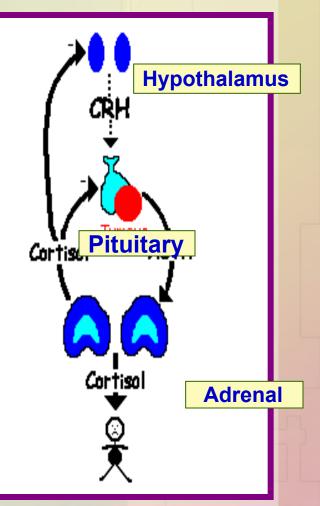

HISTOLOGICALLY:


 The adrenal gland consists of two distinct tissues of different embryological origin, the outer cortex and inner medulla.



The adrenal cortex comprises three zones based on cell type and function:

- ➤ Zona <u>Glomerulosa</u> The outermost zone → aldosterone (the principal mineralocorticoid).
- The deeper layers of the cortex:
 Zona Fasciculata
 → glucocorticoids mainly cortisol (95%)
 Zona Reticularis
 → Sex hormones

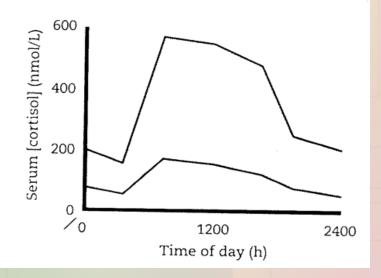

Hypothalamic-Pituitary-Adrenal (HPA) Axis

 The <u>hypothalamus</u> secretes corticotropinreleasing hormone (CRH) which stimulates the <u>anterior pituitary gland</u> to synthesis and release ACTH.

 ACTH acts on the zona fasiculata cells → release of glucocorticoids (*Cortisol*).

Regulation of ACTH and Cortisol Secretion:

- 1. Negative feedback control:
- ACTH release from the anterior pituitary is stimulated by hypothalamic secretion of corticotrophin releasing hormone (CRH).
- CRH \rightarrow \uparrow ACTH \rightarrow \uparrow [Cortisol]


<u>2. Stress</u> (e.g. major surgery, emotional stress) Stress $\rightarrow \uparrow\uparrow$ CRH & ACTH $\rightarrow \uparrow\uparrow$ Cortisol

3. The diurnal rhythm of plasma cortisol:

- Highest Cortisol level in the morning (8 9 AM).
- Lowest Cortisol level in the late afternoon and evening (8 - 9 PM).

The diurnal rhythm of cortisol secretion; the area between the curves represents values that lie within the reference range

DIURNAL RHYTHM OF CORTISOL SECRETION

Plasma [CBG] :

- In the circulation, glucocorticoids are mainly protein-bound (about 90%), <u>chiefly to</u> <u>cortisol-binding globulin</u> (CBG or transcortin).
 - — ↑↑ in pregnancy and with estrogen treatment (e.g. oral contraceptives).
 - ↓↓ in hypoproteinemic states (e.g. nephrotic syndrome).
- The biologically active fraction of cortisol in plasma is the free (unbound) component.

Cortisol and ACTH measurements

Serum [cortisol] and plasma [ACTH]:

- Serum measurement is preferred for cortisol and Plasma for ACTH.
- Samples must be collected (without venous stasis) between <u>8 a.m. and 9 a.m.</u> and between <u>10 p.m. and 12 p.m</u>. because of the diurnal rhythm.
- Temporary 11 in these hormones may be observed as a response to emotional stress.

Urinary cortisol excretion :

- Cortisol is removed from plasma by the liver → metabolically inactive compounds → excreted in urine mainly as conjugated metabolites (e.g. glucuronides).
- A small amount of cortisol is excreted unchanged in the urine (UFC).
- In normal individuals:
 - Urinary free cortisol (UFC) is < 250 nmol/24 h.
 - Cortisol / Creatinine ratio in an early morning specimen of urine is < 25 µmol cortisol / mol creatinine.

CAUSES OF ADRENOCORTICAL HYPERFUNCTION: CUSHING'S SYNDROME

• <u>ACTH - dependent :</u>

1. [↑] Pituitary ACTH 70% (Cushing's disease).
 2. Ectopic ACTH by neoplasms 10%.

ACTH - independent :

1. Adrenal tumor 20% (adenoma or carcinoma)

2. Glucocorticoid therapy.

Causes of elevated serum cortisol

concentrations:

- **1. Increased cortisol secretion:**
- Cushing's syndrome
- Exercise
- Stress, Anxiety, Depression
- Obesity
- Alcohol abuse
- Chronic renal failure

2. Increased cortisol binding globulin (CBG):

- Congenital
- Estrogen therapy
- Pregnancy

Glucocorticoid functions

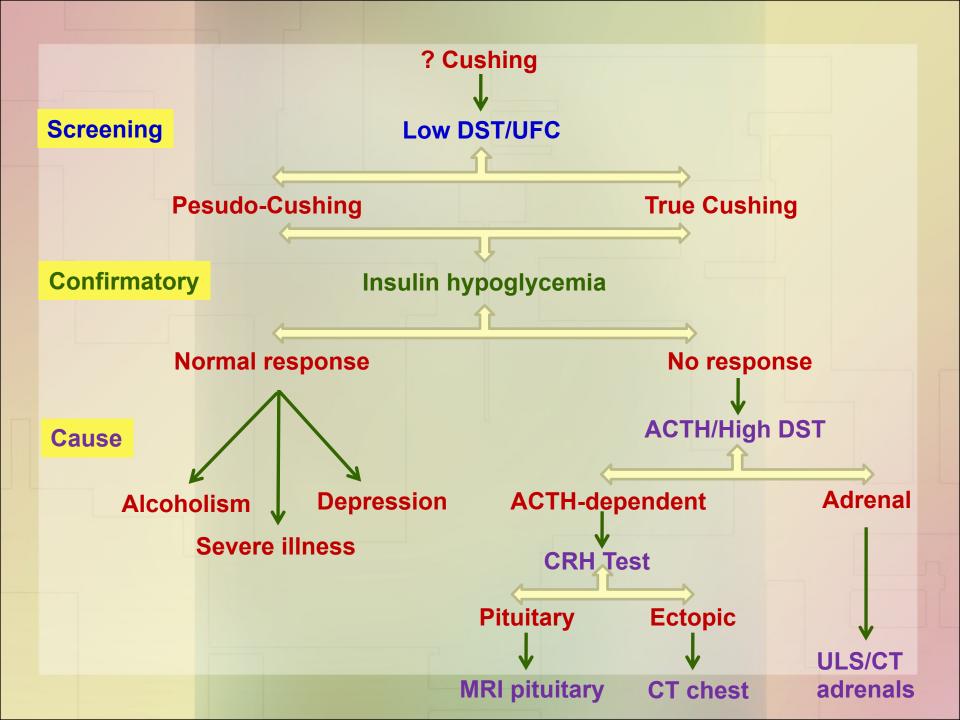
- Glucocorticoids have widespread metabolic effects on carbohydrate, fat and protein metabolism.
- Upon binding to its target, <u>CORTISOL</u> enhances metabolism in several ways:
 - In the liver, Cortisol is an insulin antagonist and has a weak mineralocorticoid action \rightarrow
 - ↑↑ Gluconeogenesis → production of glucose from newly-released amino acids and lipids
 - 11 Amino acid uptake and degradation

- In <u>the adipose tissue</u>: Cortisol $\rightarrow \uparrow\uparrow$ Lipolysis through breakdown of <u>fat</u>.
- In <u>the muscles</u>: Cortisol →↑↑ proteolysis and amino acid release.
- Conserving glucose: by inhibiting uptake into <u>muscle</u> and <u>fat cells</u>.

Cushing's Syndrome

Symptoms:

- Weight gain: trunk and face with sparing of the limbs (central obesity)
- Buffalo's hump.
- Moon face
- Excessive sweating


Symptoms (contd)

- Atrophy of the skin and mucous membranes
- Purple striae on the trunk and legs
- Proximal muscle weakness (hips, shoulders)
- Hirsuitism
- The excess cortisol may also affect other endocrine systems → ↓ libido, amenorrhoea and infertility
- Patients frequently suffer various psychological disturbances ranging from euphoria to frank psychosis.

Signs:

- Loss of diurnal rhythm of cortisol and ACTH.
- Hypertension (due to the aldosterone like effects)
- Hyperglycemia or diabetes due to insulin resistance.
- Hypokalemic alkalosis
- ↑ protein metabolism.
- Impaired immunity.

Investigations of suspected adrenocortical hyperfunction A. Screening tests (out-patient): to assess the clinical diagnosis of adrenocortical hyperfunction. **B. Confirmatory tests** (in-patient): to confirm or exclude the provisional diagnosis C. Tests to determine the cause: to ascertain: (a) The site of the pathological lesion (adrenal cortex, pituitary or elsewhere?) (b) The nature of the pathological lesion.

A. Screening tests:

Effective screening tests need to be <u>sensitive</u> but <u>do not have to be highly specific</u>.

It includes:

1. Low-dose dexamethasone (DXM) suppression test (DST): (Overnight suppression test)

 $\mathsf{DXM} \to \mathbf{\downarrow} \mathsf{CRH} \to \mathbf{\downarrow} \mathsf{ACTH} \to \mathbf{\downarrow} \mathsf{cortisol}$

2. 24-hour urinary free cortisol

A. Screening tests: 1. Low-dose DST: (outpatient procedure)

Procedure:

1 mg DXM administered at 11-12 PM the night before attending the clinic.

serum cortisol is measured at 8-9 AM.

Result:

Cortisol < 50 nmol/L (suppression)→ exclude hypercortisolnemia (Cushing Syndrome) <u>Precautions</u>: Drugs that induce hepatic microsomal enzymes (Phenobarbitone & phenytoin) → ↑ DXM metabolism and ↓ DXM blood level to achieve CRH suppression (false diagnosis of Cushing)

A. Screening tests: Cont'D

2. 24- hour urinary free cortisol:

Result: Cortisol < 250 nmol/day → exclude Cushing Syndrome. **Disadvantage**: incomplete collection of urine → a false-negative result

- <u>An alternative is to determine</u> the urinary cortisol : creatinine ratio on an early morning specimen

Interpretation of screening tests:

The screening tests serve to:

- distinguish simple non-endocrine obesity from obesity due to Cushing's syndrome.
- Confirmatory tests (in-patient basis) are required to rule out pseudo-Cushing's syndrome
- Pseudo-Cushing's syndrome:
 - Depressed or extremely anxious patients
 - Severe intercurrent illness
 - Alcoholism

B. Confirmatory tests: (Inpatient)

Insulin-induced hypoglycemia

Pseudo-Cushing patients show abnormal diurnal rhythm of S. cortisol, but, with Insulin-induced hypoglycemia → ↑ CRH, ACTH and cortisol blood levels True Cushing patients: No response to hypoglycemia

B. Confirmatory tests: ... Cont'd

Insulin-induced hypoglycemia:

- Hypoglycemia \rightarrow \uparrow CRH \rightarrow \uparrow ACTH \rightarrow \uparrow cortisol
- To test the integrity of the hypothalamicpituitary-adrenal (HPA) axis.
- To distinguish true Cushing's syndrome from pseudo-Cushing's syndrome
- Contraindicated in: epilepsy or heart disease.

Insulin hypoglycemia test Cont'd

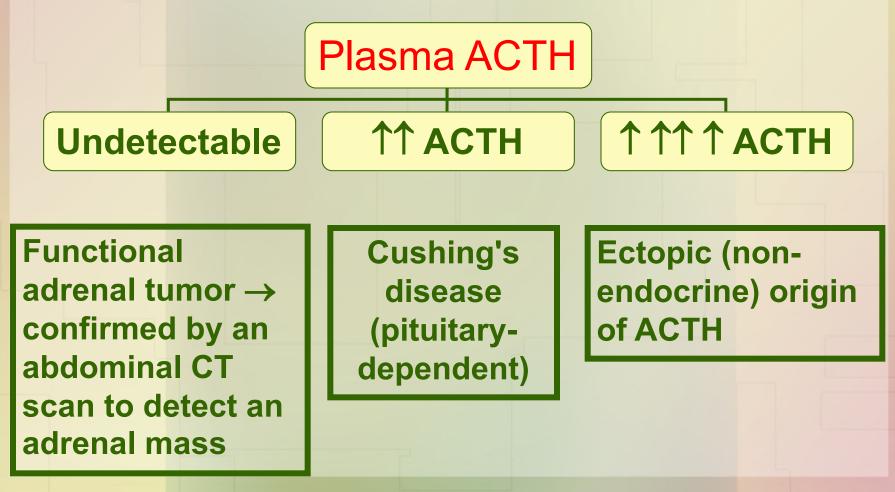
Procedure:

- Insulin I.V. (0.15 U/kg) to lower blood glucose to 2.2 mmol/L or less.
- Samples for simultaneous measurement of serum glucose and cortisol levels are taken basally (before insulin injection) and at 30, 45, 60 and 90 min after I.V. insulin injection.
- Failure to achieve a glucose level of 2.2 mmol/L invalidates the test and should be repeated with increment in step of 0.05U/kg.

Insulin hypoglycemia test Cont'd Interpretation of the results: <u>Normally:</u>

- Basal serum cortisol: at least 145 nmol/L
- At 60 90 minutes: the level > 425 nmol/L

Patients with Cushing's syndrome:


- Whatever the cause, do not respond normally to insulin-induced hypoglycemia.
 - High basal serum cortisol than normal.
 - At 60 90 minutes: no increase in S. cortisol, despite the production of an adequate degree of hypoglycemia.

C. Tests used to determine the cause of Cushing's syndrome:

- 1. To differentiate ACTH-dependant from ACTH-independent: Plasma ACTH (Diurnal rhythm)
- 2. To distinguish between ACTH-dependent causes (Pitutary Vs Lung):
 - a) High-dose DST.
 - b) CRH stimulation test
- 3. Radiological tests: MRI of pituitary and ultrasound or CT of adrenals

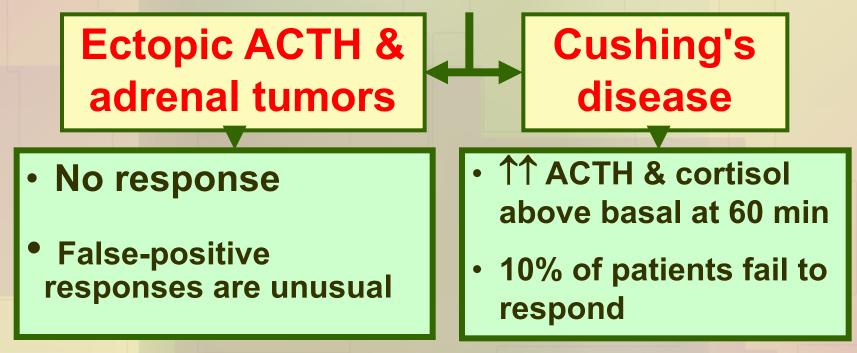
1. Plasma [ACTH]:

Plasma [ACTH] should be measured on blood specimens collected at 8-9 a.m. and 8-9 p.m.

2 (a). High-dose DST:

It is used to distinguish Cushing's disease from ectopic ACTH secretion.

- 2 mg dexamethasone six-hourly for 48 hours to suppress cortisol secretion.
- Basal (pre-dexamethasone) serum cortisol or 24-hour urine free cortisol is compared with the results at the end of the 48-hour period.


2 (a). High-dose DST Continued

• Suppression is defined as a fall to less than 50 % of basal value.

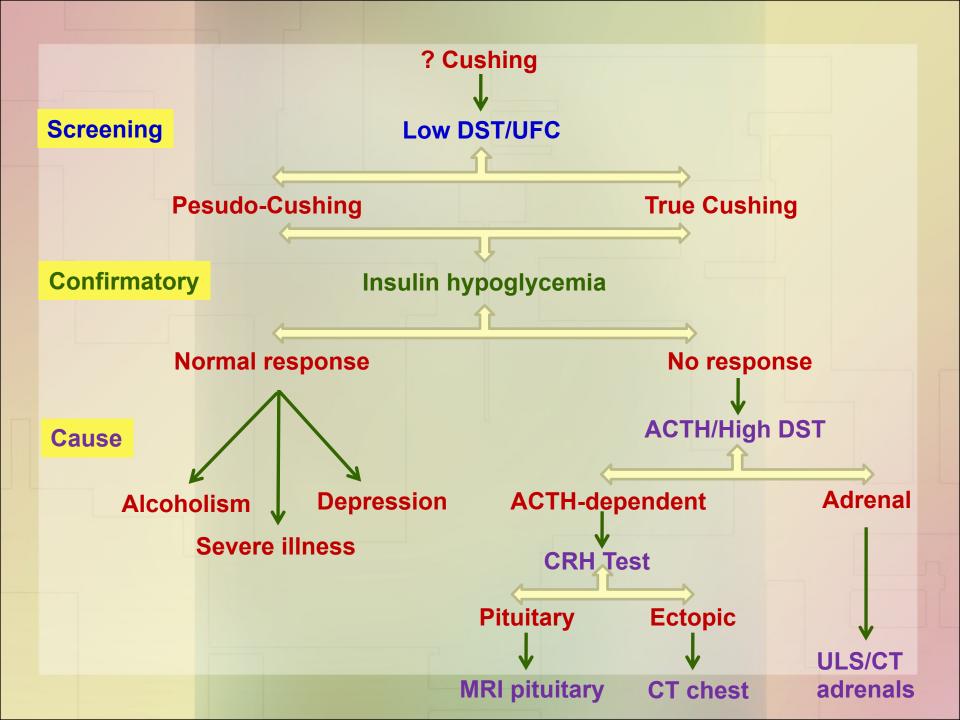
- About 90 % of patients with Cushing's disease show suppression of cortisol output.
- In contrast, only 10% of patients with ectopic ACTH production (or with adrenal tumors) show suppression.

2 (b). CRH stimulation test:

Measures the ACTH and cortisol levels basally and 60 minutes after injection of 100 µg CRH.

In Cushing's disease: High-dose dexamethasone suppression test + the CRH test \rightarrow 100 % specificity and sensitivity.

3. Radiological Investigations:


CT scanning of the adrenal glands/

Lungs

MRI of the pituitary gland

Other blood tests commonly performed for patients suspected to have Cushing's syndrome are:

- Full blood count
- Blood glucose
- Blood electrolytes and pH
- Renal function tests
- Liver function tests

Adrenal Hyperfunction Summary of Biochemical Tests

Test	Cushing's disease	Adrenal tumor	Ectopic ACTH secreting tumor
S. cortisol	1	1	↑
Low dose DST	Not suppressed	Not suppressed	Not suppressed
Urinary cortisol	1	1	1
Diurnal rhythm	Lost	Lost	Lost
Insulin-induced hypoglycemia	No response	No response	No response
Plasma [ACTH]	Normal or 1	Not detectable	$\uparrow \uparrow \uparrow$
High dose DST	suppressed	Not suppressed	Not suppressed
CRH test	1	No response	No response

Case study

58 years old man was admitted with weight loss and respiratory distress. He had increased pigmentation and BP was 140/80.

Lab tests

8.6	(2.5-7 mmol/L)			
144	(135-145 mmol/L)			
2.0	(3.5-4.5 mmol/L)			
1650	(150-550 nmol/L)			
1530	(<50nmol/L)			
Further investigation revealed the following				
DMX suppression test Basal after 48 h after 48h				
0.5 mg	g qid 2.0 mg qid			
1350 1420	1100 No suppression			
8 am 22.00	pm			
220 180	Ref. range: 7-51			
CRH showed flat response for cortisol and ACTH				
	144 2.0 1650 1530 evealed the fo Basal after 4 0.5 mg 1350 1420 8 am 22.00 220 180			

Take Home Message

- ACTH-dependent Cushing: due to pituitary causes (Cushing's disease) and due to ectopic production of ACTH.
- ACTH-independent Cushing: due to adrenal adenoma or carcinoma and due to steroid therapy (iatrogenic).
- Initial screening for Cushing by 24 h urine free cortisol or low-dose dexamethasone suppression test
- Confirmatory tests for Cushing by diurnal rhythm of plasma cortisol and insulin-induced hypoglycemia
- Tests to determine the cause of Cushing: Plasma ACTH, high-dose dexamethasone suppression test, CRH stimulation test and radiological investigations

References

- Lecture notes, Clinical Biochemistry, Wiley BlackWell, 9th edition, 2013, chapter 9, page 116-133.
- Clinical Chemistry, Principles, Procedures, Correlations, Lippincott Williams & Wilkins, 7th edition, 2013, chapter 21, page 453-471.
- Lippincott's Illustrated Reviews: Biochemistry 6th edition, Unit III, Chapter 18, Pages 219-244.