Thyroid Hormones and Thermogenesis

ENDOCRINE BLOCK

DR. USMAN GHANI

Objectives:

By the end of this lecture, the Second Year students will be able to:

- Describe the types and biosynthesis of thyroid hormones
- Discuss the thyroid hormone actions
- Understand the regulation of thyroid hormones
- List and interpret the thyroid function tests
- Define goiter and differentiate between hypo and hyperthyroidism
- Discuss the role of thyroid hormone in thermogenesis

Types and Biosynthesis of Thyroid Hormones

- \triangleright Thyroxine (T₄) and tri-iodothyronine (T₃)
- > Synthesized in the thyroid gland by:
 - lodination and coupling of two tyrosine molecules
 - Binding to thyroglobulin protein
- ➤ Thyroid gland mostly secretes T₄
- ▶ Peripheral tissues (liver, kidney, etc.) de-iodinate T₄ to T₃
- Deiodination is catalyzed by deiodinase enzymes
- \succ T₄ can be metabolized to rT₃ (inactive form)

Fig 44.1 The chemical structures of T₄, T₃ and rT₃.

Types and Biosynthesis of Thyroid Hormones

- \triangleright T₃ is a more biologically active form
- ➤ Most of T₄ is transported in plasma as proteinbound
 - Thyroxin binding globulin (TBG)-bound (70%)
 - Albumin-bound (25%)
 - Transthyretin (pre-albumin)-bound (5%)
- ► The unbound (free) form of T₄ and T₃ are biologically active

Thyroid hormone action

- > Plays essential role in the maturation of all body tissues
- >Involved in thermogenesis and metabolic regulation
- Increases cellular oxygen consumption and stimulates the metabolic rate
- Affects the rate of protein, carbohydrate and lipid metabolism

Thyroid Hormone Action

Clinical evidence of the wide spectrum of thyroid hormone action:

- Hypothyroid children have:
 - Delayed skeletal maturation → short stature
 - Delayed puberty
- Hypothyroid patients have high serum cholesterol due to:
 - Down regulation of LDL receptors on liver cells
 - Failure of sterol excretion via the gut

Regulation of Thyroid Hormone Secretion

The hypothalamic-pituitary-thyroid axis regulates thyroid secretion

The hypothalamus senses low levels of T_3/T_4 and releases thyrotropin releasing hormone (TRH)

>TRH stimulates the pituitary to produce thyroid stimulating hormone (TSH)

Regulation of Thyroid Hormone Secretion

►TSH stimulates the thyroid to produce T₃/T₄ until levels return to normal

>T₃/T₄ exert negative feedback control on the hypothalamus and pituitary

Controlling the release of both TRH and TSH

Regulation of Thyroid Hormone Secretion

High thyroid hormone levels suppress TRH, TSH

Low thyroid hormone levels stimulate TRH, TSH to produce more hormone

Clinical Chemistry, Bishop, 7th Edition, pp. 492.

Thyroid Function Tests

I. TSH measurement:

- Assessment of thyroid function
- Highly sensitive test (detects very low conc.)

II. Total T_4 or free T_4 :

- Assessment of thyroid function
- Monitors thyroid treatment (both anti-thyroid and thyroid replacement treatment)
- TSH may take up to 8 weeks to adjust to new level during treatment

Thyroid Function Tests

III. Total T_3 or free T_3 :

- Useful for assessing hyperthyroidism in which rise in T_3 is independent of T_4
- In some patients only T₃ rises (T₄ is normal): T₃ toxicosis
- For earlier identification of thyrotoxicosis

IV. Antibodies:

- Diagnosis and monitoring of autoimmune thyroid disease:
 - Hashimoto's thyroiditis (antibodies against TSH receptors that suppress thyroid secretion)
 - Graves' disease (antibodies against TSH receptors that stimulate thyroid secretion)

Goitre, Hypo and Hyperthyroidism

Enlarged thyroid gland

Goitre may be associated with:

- Hypofunction
- Hyperfunction
- Normal thyroid hormone conc. (euthyroid)

Causes:

- Iodine, selenium deficiency
- Hashimoto's thyroiditis
- Graves' disease (hyperthyroidism)
- Congenital hypothyroidism / thyroid cancer

Fig 44.2 A patient with a goitre.

Hypothyroidism

Deficiency of thyroid hormones

Primary hypothyroidism:

 Failure of thyroid gland (Elevated TSH, deficiency of thyroid hormones)

Secondary hypothyroidism:

- Failure of the pituitary gland to secrete TSH (rare)
- Failure of the hypothalamic-pituitary-thyroid axis

Hypothyroidism

Causes:

- Hashimoto's thyroiditis
- Radioiodine or surgical treatment of hyperthyroidism
- Drug effects
- TSH deficiency
- Congenital defects in thyroid synthesis / thyroid resistance
- Severe iodine deficiency

Clinical features

Tiredness / cold intolerance / weight gain / dry skin

Treatment

Replacement therapy with levothyroxine (T₄)

Hypothyroidism

Non-thyroidal illness

- In some diseases, the normal regulation of TSH, T₃ and T₄ secretion and metabolism is disturbed
- Most of T₄ is converted to rT₃ (inactive)
- Causing thyroid hormone deficiency
- Secretion of T₄ and T₃ is decreased

Hyperthyroidism

- > Hyperstimulation of thyroid gland by pituitary gland
- Hypersecretion of thyroid hormones
- Tissues are exposed to high levels of thyroid hormones (thyrotoxicosis)

Causes:

- Graves' disease
- Toxic multinodular goitre
- Thyroid adenoma
- Thyroiditis
- Excessive intake of iodine / iodine drugs
- Excessive intake of T₄ and T₃

Hyperthyroidism

Clinical features:

- Weight loss with normal appetite
- Sweating / heat intolerance
- ➤ Fatigue
- ➤ Palpitation / agitation, tremor
- >Angina, heart failure
- ➤ Diarrhea
- Eyelid retraction and lid lag

Fig 46.3 Lid retraction and exophthalmos in a patient with Graves' disease.

Graves' disease

- Most common cause of hyperthyroidism
- >An autoimmune disease
- Due to antibodies against TSH receptors on thyroid gland
- The antibodies mimic the action of pituitary hormone
- Causing hypersecretion of thyroid hormone

Hyperthyroidism

Diagnosis

- Suppressed / undetectable TSH level
- Raised thyroid hormones levels
- Confirms primary hyperthyroidism

Problems in diagnosis

- ➤ Total serum T₄ varies due to changes in binding protein levels
- High estrogens in pregnancy increase TBG synthesis

Hyperthyroidism

- Congenital TBG deficiency can also influence results
- ► Free T₄ and TSH are first-line tests for diagnosis of thyroid dysfunction

Treatment

- >Antithyroid drugs: carbimazole, propylthiouracil
- ➤ Radioiodine: sodium ¹³¹I inhibits T₄/T₃ synthesis
- ➤ Surgery: thyroidectomy

Fig 46.2 Strategy for the biochemical investigation of suspected hyperthyroidism.

Thermogenesis (Heat production)

- > Humans are homeothermic (keep constant body temp.)
- > Tightly controlled temperature homeostasis
- Thermogenesis is of two types:
 - ➤ Obligatory: Heat production due to basal metabolic rate
 - Facultative: On-demand extra heat production from metabolic activity in brown adipose tissue, skeletal muscle, etc.
- Facultative thermogenesis in brown adipose tissue is stimulated by sympathetic nervous system

Thyroid Hormone and Thermogenesis

➤ Thyroid hormone plays essential roles in thermogenesis

>It upregulates body temperature set by the brain

It acts centrally on the hypothalamus that controls brown adipose tissue for thermogenesis

Two mechanisms of thyroid thermogenesis

Thyroid thermogenesis Two mechanisms Classical peripheral New: central, brown fat of thyroid VMH thermogenesis Brain-AMPK, -Thyroid gland Brown adipose tissue SERCA → NaK GPDH GPDH Muscle Heat Mitochondria UCP3

- In respiratory chain, some protons reenter the mitochondrial matrix thru uncoupling proteins (UCPs) without ATP synthesis
- These protons are released as heat
- Thyroid hormone regulates mitochondrial UCPs

Examples:

- UCP1 in brown adipose tissue
- UCP3 in muscle, other tissues

Copyright © 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

Copyright @ 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins

Take home message

- Thyroid hormones are synthesized in the thyroid gland by iodination, coupling and binding to thyroglobulin protein
- >Thyroid hormones regulate metabolism and thermogenesis in the body
- ➤ It is regulated by hypothalamic-pituitary-thyroid axis
- ➤ Thyroid function tests such as TSH, total and free T₄ and T₃, and antibodies help diagnose and follow up thyroid disorders
- ➤ Goiter, hypo- and hyperthyroidism are due to abnormalities in thyroid functions

References

Clinical Biochemistry: An Illustrated Colour Text, 5th Edition, Allan Gaw, pp. 88-93, Churchill Livingstone, UK.

Nedergaard, J and Cannon, B. Thyroid hormones: igniting brown fat via the brain. *Nature Medicine*, Volume 16, Number 9, pp. 965-967, 2010.