

Pharmacology of Corticosteroids

By

Mohammed M. Alanazi, B.Pharm, Ph.D

Assistant Professor

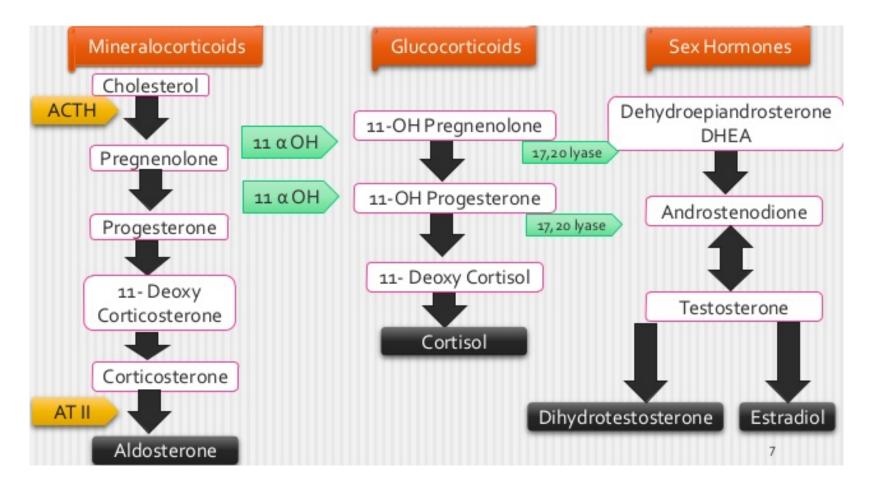
Department of Pharmacology and Toxicology

College of Pharmacy, KSU

momalanazi@ksu.edu.sa

Office# 1A29 – College of Dentistry

Slides are adopted and modified from Dr. Alia Alshanawani


Objectives

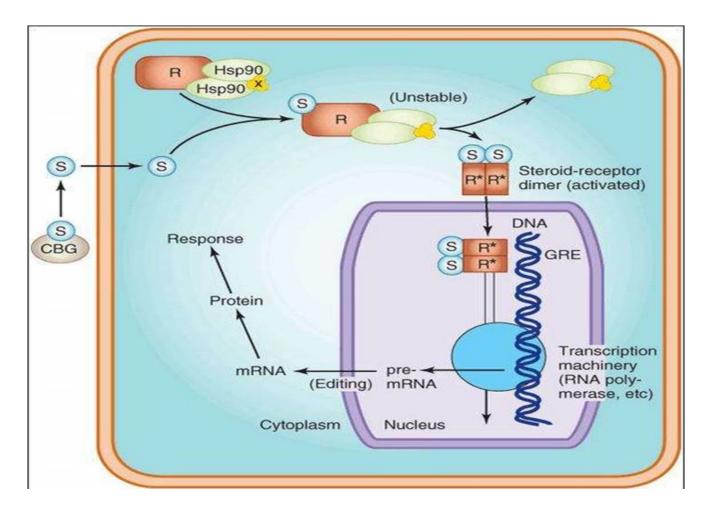
- By the end of this lecture, the student will be able to Know Corticosteroids: glucocorticoids (GCs) and mineralocorticoids (MCs) from different perspectives:
 - Their synthesis
 - Their Mechanism of actions
 - Their Metabolic, catabolic, anti-inflammatory and immunosuppressive effects
 - Some examples of GCs and MCs
 - Some of their clinical uses
 - Toxicity
 - GCs and MCs antagonists

Introduction

- The **Corticosteroids** are steroid hormones produced by the <u>adrenal cortex</u>.
- <u>They consist of two major groups</u>:
- 1. Glucocorticoids [Major cortisol (Hydrocortisone)]
- 2. Mineralocorticoids (most important Aldosterone)

Biosynthesis of Adrenal Hormones

GCs and MCs Effects:


• Glucocorticoids:

They have important effects on intermediary metabolism, catabolism, immune responses, growth and inflammation.

• Mineralocorticoids:

They have salt-retaining activity which regulate sodium & potassium reabsorption in the collecting tubules of the kidney.

GCs Mechanism of Action

GCs Mechanism of Action

 Corticosteroid is present in the blood bound to the corticosteroid binding globulin (CBG) & enters the cell as the free molecule.

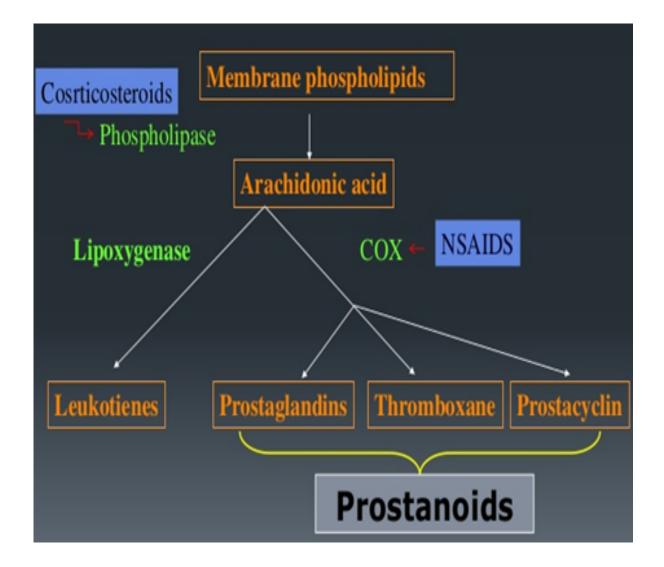
 The intracellular receptor (R) is bound to the stabilizing proteins, including heat shock protein 90 (Hsp90) & several others (X). When the complex binds a molecule of steroid, the Hsp90 & associated molecules are released.

GCs Mechanism of Action

- The Steroid– R complex enters the nucleus as a dimer, binds to the glucocorticoid response element (GRE) on the gene & regulates gene transcription by RNA polymerase II & associated transcription factors.
- The resulting mRNA is edited & exported to the cytoplasm for the production of protein that brings about the final hormone response.

GCs Metabolic effects

- Glucocorticoids stimulate gluconeogenesis, as a result:
 - Blood glucose rises
 - Insulin secretion is stimulated
 - Stimulate lipolysis & lipogenesis (due to increased insulin)
- With a net increase of fat deposition in certain areas e.g, the face (moon faces) and shoulder & back (buffalo hump).
- These effects occur when the patient is treated with 100 mg of hydrocortisone or > for longer than 2 weeks.


GCs Catabolic effects

- Glucocorticoids cause muscle **protein** catabolism (muscle mass)
- Lymphoid & connective tissue, fat & skin undergo wasting
- Catabolic effects on **bone** lead to osteoporosis
- In children, growth is inhibited.

GCs Anti–inflammatory effects

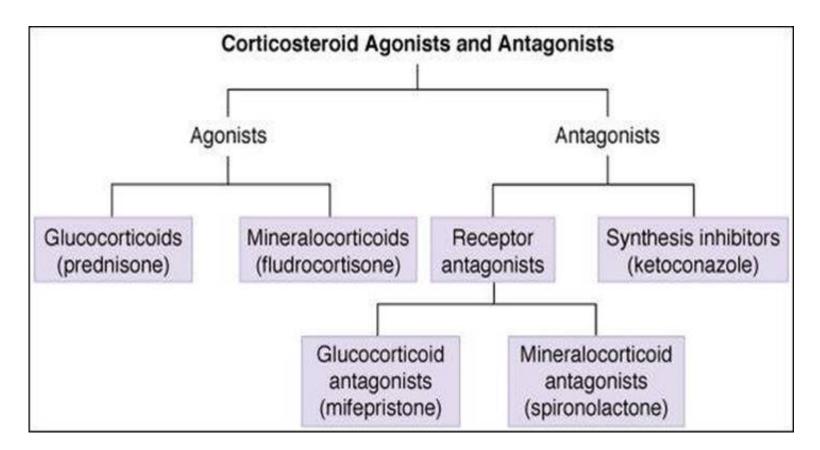
- Glucocorticoids have important <u>inhibitory</u> effects on the distribution, function
 & migration of **leukocytes**
- <u>Suppressive</u> effect on the inflammatory cytokines & chemokines

- These drugs increase neutrophils & <u>decrease</u> lymphocytes, eosinophils, basophils & monocytes
- MOA: Inhibit phospholipase A2 & Prostaglandins synthesis.

GCs Immunosuppressive effects

 Glucocorticoids inhibit cell-mediated immunologic functions, especially dependent on lymphocytes & decrease interleukins secretion.

 Glucocorticoids do not interfere with the development of normal acquired immunity but delay rejection reactions in patients with organ transplants.


GCs Other effects

 Glucocorticoids such as cortisol are required for normal renal excretion of water loads.

• **CNS**: When given in <u>large doses</u> these drugs may cause profound behavioral changes (first insomnia & euphoria then depression).

 GIT: <u>Large doses</u> also stimulate gastric acid secretion & decrease resistance to ulcer formation.

Examples for Corticosteroids: Agonists vs. Antagonists

Examples for Glucocorticoids

- Cortisol (hydrocortisone)
- The major natural glucocorticoid
- The physiologic secretion of cortisol is regulated by adrenocorticotropin hormone (ACTH) & secretion rate varies during the day (circadian rhythm), peaks in the early morning & declines about midnight.

Cortisol Pharmacokinetics

- Given orally, cortisol is well absorbed from GIT
- Cortisol in the plasma is 95% bound to CBG
- It is metabolized by the liver & has short duration of action compared with the synthetic congeners
- It diffuses **poorly** across normal skin & mucous membranes
- The cortisol molecule also has a small but significant mineralocorticoid effect. This is an important cause of hypertension in patients with cortisol secreting adrenal tumor or a pituitary ACTH secreting tumor (Cushing's syndrome).

Examples for Glucocorticoids

- Synthetic Glucocorticoids
 - Large number are available for use:
 - Prednisone & its active metabolite prednisolone
 - **Dexamethasone**
 - **Beclomethasone**
 - Budesonide

Synthetic Glucocorticoids

• Their properties (compared with cortisol) include:

- Longer half life & duration of action
- Reduce salt retaining effect
- Better penetration of lipid barriers for topical activity.

	Activity ¹				
Agent	Anti- Inflammatory	Topical	Salt-Retaining	– Equivalent Oral Dose (mg)	Forms Available
Short- to medium-acting glucocorticoids					
Hydrocortisone (cortisol)	1	1	1	20	Oral, injectable, topical
Cortisone	0.8	0	0.8	25	Oral
Prednisone	4	0	0.3	5	Oral
Prednisolone	5	4	0.3	5	Oral, injectable
Methylprednisolone	5	5	0.25	4	Oral, injectable
Meprednisone ²	5		0	4	Oral, injectable
Intermediate-acting glucocorticoids					
Triamcinolone	5	5 ³	0	4	Oral, injectable, topical
Paramethasone ²	10		0	2	Oral, injectable
Fluprednisolone ²	15	7	0	1.5	Oral
Long-acting glucocorticoids					
Betamethasone	25-40	10	0	0.6	Oral, injectable, topical
Dexamethasone	30	10	0	0.75	Oral, injectable, topical
Mineralocorticoids					
Fludrocortisone	10	0	250	2	Oral
Desoxycorticosterone acetate ²	0	0	20		Injectable, pellets

¹Potency relative to hydrocortisone.

²Outside USA.

³Triamcinolone acetonide: Up to 100.

Synthetic Glucocorticoids

- Beclomethasone & budesonide have been developed for use in asthma & other conditions in which good surface activity on mucous membrane or skin is needed & systemic effects are to be avoided.
- These drugs rapidly penetrate the airway mucosa but have very short half lives after they enter the blood, so that systemic effects & toxicity are greatly reduced.

Adrenal disorders:

- Addison's disease (**chronic** adrenal cortical insufficiency)
- Acute adrenal insufficiency associated with life threatening shock, infections or trauma
- Congenital adrenal hyperplasia (in which synthesis of abnormal forms of corticosteroids are stimulated by ACTH).

Non-adrenal disorders:

- Allergic reactions (e.g. bronchial asthma, angioneurotic edema, drug reactions, urticaria, allergic rhinitis)
- Collagen vascular disorder (e.g; rheumatoid arthritis, systemic lupus erythematosus, giant cell arteritis, polymyositis, mixed connective tissue syndrome)
- Organ transplants (prevention & treatment of rejection immunosuppression).

- <u>Non-adrenal disorders:</u>
- GI disorders such as inflammatory bowel disease
- Hematologic disorders (leukemia, multiple myeloma, acquired hemolytic anemia, acute allergic purpura)
- Infections (acute respiratory distress syndrome, sepsis)
- Neurologic disorders (to minimize cerebral edema after brain surgery, multiple sclerosis).

Non-adrenal disorders:

- Pulmonary diseases (e.g.; aspiration pneumonia, bronchial asthma, sarcoidosis).
- Thyroid diseases (malignant exophthalmos, subacute thyroiditis)
- Renal disorders (nephrotic syndrome)
- Miscellaneous (hypercalcemia, mountain sickness).

Corticosteroids Toxicity (Adverse effects)

- Cushing's syndrome (iatrogenic, by higher doses > than 100 mg hydrocortisone daily for > than 2 weeks characterized by moon shape face & buffalo hump)
- Increased growth of fine hair on face, thighs & trunk. Myopathy, muscle wasting, thinning of skin, Diabetes Mellitus
- Osteoporosis & aseptic necrosis of the hip
- Wound healing is impaired

Corticosteroids Toxicity (Adverse effects)

- Peptic ulcer
- Acute psychosis, depression
- Subcapsular cataracts
- Growth suppression
- Hypertension
- Adrenal suppression.

Methods for minimizing these toxicities include

- Local application (e.g, aerosol for asthma)
- Alternate day therapy (to reduce pituitary suppression)
- Tapering the dose soon after achieving a therapeutic response
- To avoid adrenal insufficiency in patients who have had long term therapy, additional stress doses may need to be given during serious illness, or before major surgery.

Examples for Mineralocorticoids:

Aldosterone:

- The major **natural** mineralocorticoid in human.
- Aldosterone is the main salt-retaining hormone, promotes Na reabsorption, K excretion, in the distal convoluted tubule & thus it is very important in the regulation of blood volume & blood pressure. Its secretion is regulated by ACTH & by the renin-angiotensin system.
- Aldosterone has short half life & little glucocorticoid activity.

Examples for Mineralocorticoids:

Aldosterone Mechanism of action:

• Same as that of glucocorticoids.

 Fludrocortisone is favored for <u>replacement therapy</u> after adrenalectomy & in other conditions in which mineralocorticoid therapy is needed.

Examples for Corticosteroids Antagonists:

- <u>Receptor Antagonists:</u>
- **Spironolactone** (<u>mineralocorticoid</u> antagonist & K-sparing diuretic)
 - antagonists of aldosterone at its receptor, used in the treatment of primary aldosteronism (Conn's syndrome).

Mifepristone:

 A competitive inhibitor of <u>glucocorticoid</u> receptors & useful in the treatment of Cushing's syndrome.

Examples for GCs Antagonists:

Synthesis inhibitors:

- Ketoconazole (anti fungal)
- Clinical uses:
- Adrenal cancer, when surgical therapy is impractical or unsuccessful because of metastasis.

Examples for GCs Antagonists:

- Mechanism of Action of Ketoconazole:
- It inhibits the cytochrome p450 enzymes necessary for the synthesis of all steroids & is used in a no. of conditions in which <u>reduced</u> <u>steroid</u> level are desirable such as:
 - 1. Adrenal carcinoma
 - 2. Hirsutism
 - 3. Breast cancer
 - 4. Prostate cancer.

Questions ???