Congenital Adrenal Hyperplasia and **Testicular Feminization** Syndromes

Reproductive Block

Objectives

- Adrenal steroidogenesis
- Congenital adrenal hyperplasia syndrome

Types

Biochemical characteristics

Clinical manifestations

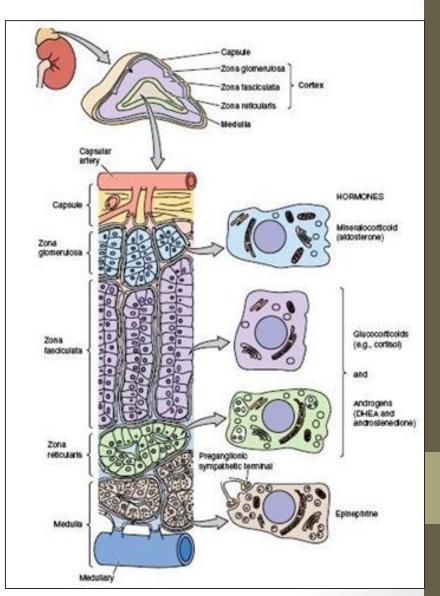
• Testicular feminization syndrome

Adrenal Glands

The adrenal glands comprise 3 separate hormone systems:

The zona glomerulosa:

Secretes aldosterone


The zona fasciculata & reticularis:

Secrete cortisol & the adrenal

androgens

The adrenal medulla:

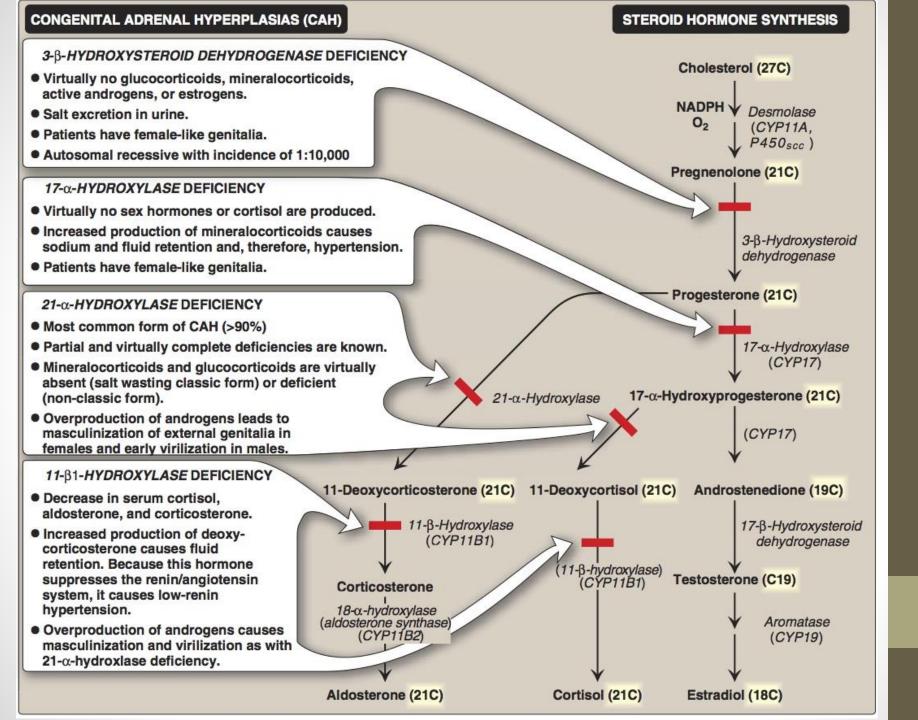
Secretes catecholamines (mainly epinephrine)

Hermaphroditism or Intersex

• A person who has neither standard male or standard female anatomy. Discrepancy between the type of gonads and the external genitalia

- True hermaphrodite (ovary plus testis)
- Female pseudohermaphrodite (FPH, only ovary)
- Male pseudohermaphrodite (MPH, only testis)

Glucocorticoids & Mineralocorticoids


• Glucocorticoids:

- Steroids with cortisol-like activity
- Potent metabolic regulators & immunosuppressants

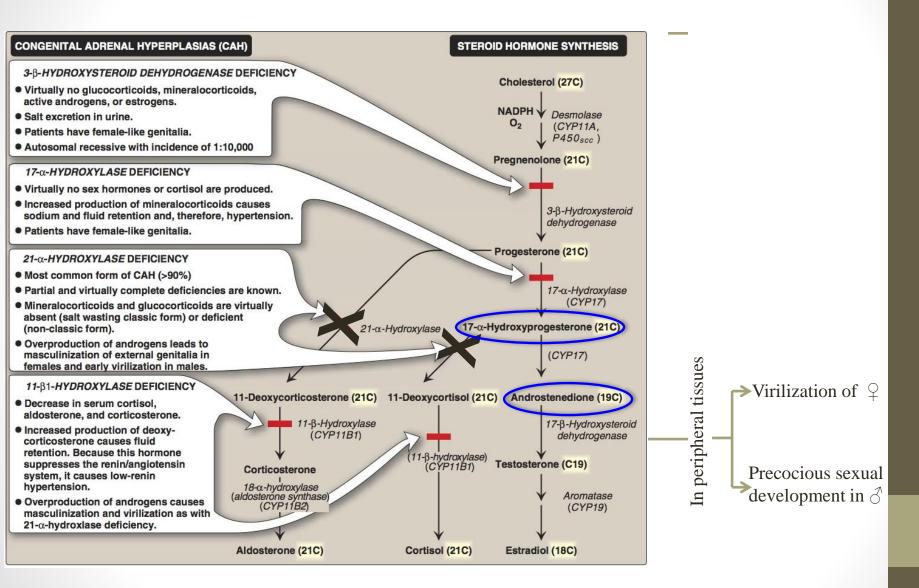
• Mineralocorticoids:

- Steroids with aldosterone-like activity
- Promote renal sodium reabsorption

Steroidogenesis and Congenital adrenal hyperplasia syndrome

Congenital Adrenal Hyperplasia (CAH) Syndromes

- It is the result of an inherited enzyme defect in steroid biosynthesis
- The adrenals :
 - Cannot secrete cortisol → absent negative feedback to the pituitary) → ACTH continues to drive steroid biosynthesis → adrenal hyperplasia and accumulation of cortisol precursors (depending on which enzyme is lacking)
 - Cannot secrete aldosterone \rightarrow electrolyte disturbances
 - Hyponatremia
 - Hyperkalemia
- The condition might be fatal unless diagnosed early


CAH Syndromes

- **21** α-Hydroxylase deficiency
- **□** 11 β-Hydroxylase deficiency
- **Π** 17 α-Hydroxylase deficiency
- **3** β-Hydroxysteroid dehydrogenase deficiency

21 α-Hydroxylase Deficiency

- The most common type of CAH (90%)
- Clinically:
 - ➤ Complete enzyme defect: ↑ stimulation of adrenal androgen production → virilization in baby girls & precocious puberty in boys.
 - ➢ Partial enzyme defect → late onset form → menstrual irregularity & hirsutism in young females.
- Laboratory diagnosis: ↑ plasma [17-α-hydroxyprogesterone] as early as 4 days after birth

21 α-Hydroxylase Deficiency

21 α-Hydroxylase Deficiency.....CONT'D

- Autosomal recessive condition
- Impaired synthesis of both cortisol & aldosterone
- \downarrow [cortisol] \rightarrow \uparrow ACTH secretion \rightarrow Adrenal gland hyperplasia
- Accumulated $17-\alpha$ -hydroxyprogesterone are diverted to the biosynthesis of sex hormones \rightarrow signs of androgen excess:
 - Ambiguous genitalia in newborn girls (FPH)
 - Rapid postnatal growth in both sexes
- Severe cases: mineralocorticoid deficiency → salt & H₂O loss → hypovolemia & shock → neonatal adrenal crisis
- Late presentation (adult life) is possible in less severe cases

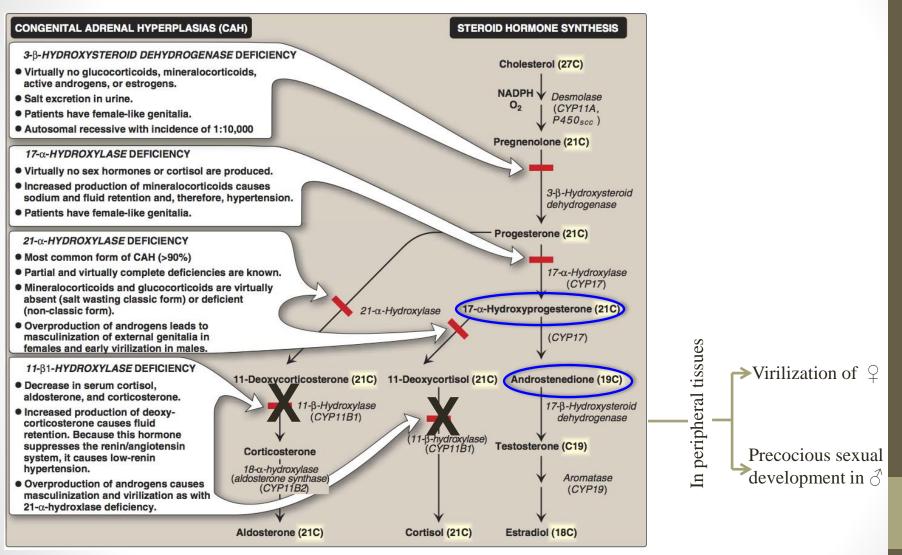
21 α-Hydroxylase Deficiency: Genetics

- Mutations in the CYP21 gene
 - Deletions
 - Nonsense
 - Missense
- DNA testing: For prenatal diagnosis and confirmation of diagnosis

21 α-Hydroxylase Deficiency: Diagnosis

- Serum sample taken at least 2 days after birth (earlier samples may contain maternally derived 17-α-hydroxyprogesterone)
- Classic (complete) deficiency is characterized by markedly elevated serum levels of $17-\alpha$ -hydroxyprogesterone
- Late-onset (partial) deficiency may require corticotropin (ACTH) stimulation test:
 - Measure base-line and stimulated levels of 17-αhydroxyprogesterone.
 - High level of 17-α-hydroxyprogesterone after stimulation is diagnostic

11 β - Hydroxylase Deficiency

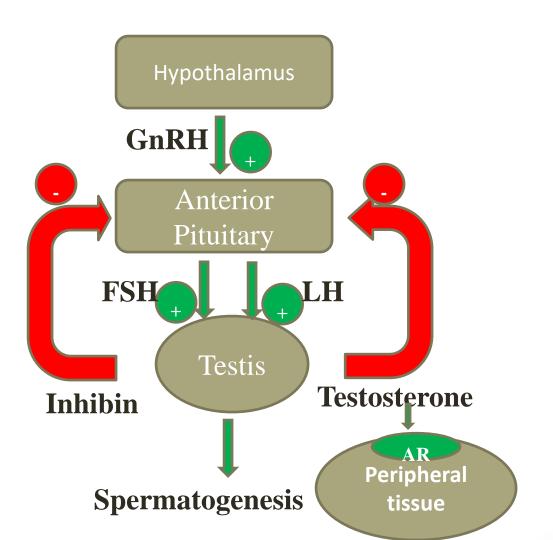

leads to high concentrations of 11-deoxycortisol

Leads to high levels of 11-deoxycorticosterone with mineralocorticoid effect (salt and water retention)

Suppresses renin/angiotensin system ——>low-renin hypertension

Masculinization in females (FPH) and early virilization in males

β -Hydroxylase Deficiency



Testicular Feminization Syndrome (Androgen Insensitivity Syndrome)

Disorders of Male Sexual Differentiation

- They are **rare** group of disorders
- The defect may be in:
 - Androgen receptors (inactive androgen receptors → target tissues cannot respond to stimulation by circulating testosterone; e.g., Testicular feminization syndrome)

Control of testicular function by the gonadotrophins

Testicular Feminization Syndrome

- 46, XY karyotype
- X-linked recessive disorder
- Androgen receptor resistance _____ high testosterone blood level
- In peripheral tissue, testosterone will be converted by aromatase into estradiol —> feminization
- Patients have normal testes & produce normal amounts of müllerianinhibiting factor (MIF), therefore, affected individuals **do not have** fallopian tubes, a uterus, or a proximal (upper) vagina.

Clinical Picture:

- Complete androgen insensitivity syndrome (CAIS): female external genitalia with normal labia, clitoris, and vaginal introitus (MPH)
- **Partial androgen insensitivity syndrome (PAIS):** mildly virilized female external genitalia (clitorimegaly without other external anomalies) to mildly undervirilized male external genitalia (hypospadias and/or diminished penile size)

Laboratory Diagnosis

Karyotype: differentiate an undermasculinized male from a masculinized female.

Fluorescent in situ hybridization (FISH): Presence of a Y chromosome can be confirmed by probes for the *SRY* region of the Y chromosome. These offer a much quicker turnaround time than conventional karyotypes.

Increased (or normal) testosterone and dihydrotestosterone blood levels

DNA tests and mutation analysis for androgen receptor gene:

Complete or partial gene deletions, point mutations, or small insertions/deletions

Further Investigations

Imaging Studies "Pelvic ultrasound":

Absence of fallopian tubes and uterus

References

- Lippincott's Illustrated Reviews Biochemistry: 6th edition, Chapters 18 (Pages 219 - 244).
- Physiology of Testicular Function: <u>shorturl.at/aMVYZ</u>