Team Medicine

Chronic Kidney
Disease (CKD)

Writer: fatema Abbulkarim

Reviser: Samiha Alsetaily

Leaber: Alanoob Asírí

"Bones can break, muscles can atrophy, glands can loaf, even the brain can go to sleep without immediate danger to survival. But – should kidneys fail... neither bone, muscle, nor brain could carry-on." – Hamer Smith

Definitions:

- Chronic Kidney Disease (CKD) (Chronic Renal Failure {CRF}): chronic progressive irreversible (to differentiate from acute kidney injury) loss of renal function.
- **End Stage Renal Disease (ESRD):** advanced CKD (Stage-5) requiring <u>dialysis</u> or kidney <u>transplantation</u>.

Chronic Kidney Disease - Stages:

➤ Since 2001, the term CRF was changed to CKD, and the staging system for the disease changed from "mild, moderate to severe" to staging from stage 1 to stage 5.

Stage	Description	GFR (ml/min/1.73m ²)
1	Kidney damage with normal or ↑ GFR Evidence by lab (e.g. ↑ uria, ↑ creatinine, proteinuria, hematuria) or by radiology (e.g. cysts, stones, atrophic kidney) + ↑ or normal GFR	> 90
2	Mild ↓ GFR	60 - 89
3	Moderate ↓ GFR	30 - 59
4	Severe ↓ GFR	15 - 29
5	Kidney failure, ESRD	<15 or dialysis

Etiology of Chronic Kidney Disease (CKD):

- Diabetes mellitus (DM)
- Hypertension
- o Glomerulonephritis
- o Hereditary cystic and cong. renal disease
- Interstitial nephritis/pyelonephritis
- o Tumours
- Miscellaneous

Remember: these 3 leading causes of CKD

4%

2%

Pathophysiology:

- Loss of nephron mass (by any cause: DM, HTN, glomerulonephritis, stones, cysts) → hypertrophy of the remaining nephrons:
 - The hypertrophied nephron plasma flow and glomerular pressure increase (vasodilatation of the aff. Arterioles)
 - Proximal reabsorption of NaCl, Fluids and PO4 : Enhanced in the remaining
 - Collecting ducts secretion of K+ and H+

Enhanced in the remaining nephrons in order to compensate

- These <u>adaptations</u> initially restore hemeostasis [temporarily]
- But glomerular <u>hyper</u>filtration → glomerular injury, glomerulosclerosis and further loss of renal function.
- 2. production of growth factors:
 - Transforming growth factor-B
 - Platelets derived growth factors
 - Osteopontin, angiotensin-II
 - Endothelin

Interstitial fibrosis in the kidneys

Vicious cycle of CKD that leads to ESRD:

Factors contributing to the Progression of CKD:

- Degree of hypertension
- Severity of proteinuria
- o Hyperlipidemia
- o Drugs (NSAID)
- High protein diet
- o Persistent metabolic acidosis
- Extent of tubulointerstitial disease

Managing these risk factors will help the patient to live without dialysis for as long as possible.

Uremic syndrome

- o **Uremia** results from **retention** of **end products** of **protein metabolism**.
- Group of signs and symptoms that the patients present with when they develop kidney failure.
- Previously, it was thought that accumulation of only urea was the cause of Uremic Syndrome, but later it was found that it is caused by <u>other toxins</u>.
- o Administration of urea causes only mild symptoms.
- o Other potential uremic toxins:

- Guanidine - Phenoles

- P2 microglobulin - Phosphate

- Hipurate - Polyamines

- Homocysteine - Purines

- Parathyroid hormone (PTH) - Dimethyl arginine

Metabolic and electrolytes abnormalities in CKD:

A. Carbohydrate intolerance:

- Insulin is degraded by the liver and kidneys.
- The **decrease in insulin clearance** is offset by peripheral insulin resistance.
- Hyperparathyroidism inhibits insulin secretion.
- Decrease in requirements for insulin and OHD in diabetic patients as they develop renal failure. (Diabetic patients who don't decrease their insulin doses eventually will develop hypoglycemia)

B. Dyslipidemia:

- ↓ HDL cholesterol
- ↑ TG and lipoprotein(α)

C. Fluid and Electrolytes:

- ↓ GFR and defective tubular function → expansion of plasma and ECF volumes, edema, and hypertension.
- **Hypertension** is common unless Na+ intake is restricted to 100 meg/day.
- <u>Hyponatremia</u> can result from <u>failure to excrete free water</u> when intakes exceed 1.5 L/day [sodium is diluted]
- Patient with salt lossing nephropathy require stepwise increases in Nacl and fluid intake.

- K+ elimination in CKD is **initially** [in the beginning] maintained by:
 - enhanced K+ secretion in surviving nephrons
 - colonic K+ secretion (from aldosterone stimulated by hyperkalemia and metabolic acidosis)...
 - However, as GFR decreases, K+ elimination is curtailed (reduced) → hyperkalemia

D. Acid-Base abnormalities "metabolic acidosis":

1. The body produces about **80 mmol of non-volatile acids**from metabolism everyday. **The only way to get rid of these**acids is through the kidneys. These acids accumulates as renal failure progresses.

Volatile acid
Acid that can be excreted by lung
(Figure acreted by lung)

Volatile acid (الحموض الطيارة): Acid that can be excreted by lungs (E.g: carbonic acid). Non-volatile acids cannot be excreted by lungs.

- Production of ammonia NH₃ (in distal and CD cells)
 decreases → limits distal tubular H+ trapping to create NH₄
 (ammonium) and hence, decreases renal bicarbonate regeneration.
- 3. Additionally, there may be **proximal HCO**₃ **wasting** or **reduced distal H+ secretion**.

E. Calcium and phosphate abnormalities: (IMP.)

[Rephrasing of text in Kumar 7th ed. p.628:

Phosphate retention (due to direct or indirect causes) results in an <u>increase</u> in <u>PTH</u> synthesis and release. This is <u>secondary hyperparathyroidism</u>. Long-standing secondary hyperparathyroidism will cause hyperplasia of the glands → autonomous hyperparathyroidism (tertiary hyperparathyroidism) in which hypercalcemia is also present.]

Hyperphosphatemia:

- Independent risk factor in the increased morbidity and mortality of stage-5 CKD from cardiovascular events.
- Hyperphosphatemia, ↑ ca * po4 product (>55 mg/dl), and ↑ calcium load (dietary + dialysate) predict coronary artery calcifications (> 50% of stage 5 CKD patients) as evaluated by electron beam computed tomography.

Renal Osteodystrophy (ROD):

- "Renal osteodystrophy is an old terminology, 'CKD bone mineral disease' is the new terminology."
- Is a complex disorders of bones in uremic patient resulting from abnormalities of mineral ions (Ca, PO₄, Mg) ,PTH and Vit-D metabolism in the presence of factors related to the uremic state.
- Spectrum of bone abnormalities in ROD:
 - 1. Osteitis fibrosa cystica (high bone turnover) due to:
 - PTH
 - activity of both osteoclast and osteoblast
 - 2. Osteomalacia
 - 3. Adynamic bone disease (low bone tumour)
 - 4. Combination of the above
- o Adynamic bone:
 - Risk factors:
 - Advanced age
 - o CAPD
 - o Diabetes mellitus
 - Calcitriol therapy
 - o Parathyroidectomy
 - Flouride and iron intoxication
 - Mechanism:
 - Defect in osteoblast development or activity cause by factors related to the uremic state.

Cardiovascular abnormalities of ESRD (CKD-5): [IMP.]

1. Hypertension:

- o Occurs in 90% of patients with ESRD.
- o Causes:
 - Salt and water retention (the primary cause).

- ↑ Sympathetic tone.
- ↑ Generation of vasoconstrictors (endothelin).
- ↓ Generation of vasodilators (nitric oxide).

2. Cardiomyopathy:

- o Left ventricular hypertrophy (LVH).
- o Coronary artery disease (CAD).
- o Congestive heart failure (CHF).
- o Diastolic dysfunction.

3. Pericarditis and pericardial effusion

- o [Step up p.275: pericarditis in CKD is uremic pericarditis]
- These abnormalities increase 2-5 folds in ESRD
- o About one-half of all hemodialysis patients have significant ischemic heart disease
- Dyslipidemia, HTN, \underhomocystin, DM, and insulin resistance contribute to atherosclerosis
- Anemia aggravates LVH (Left ventricular hypertrophy)
- o Hyperparathyroidism, amyloidosis, and iron overload cause also cardiac dysfunction.

Neuromuscular abnormalities:

CNS dysfunction:

- Decreased attention, agitation, confusion, insomnia, and impaired memory.
- May develop also: depression, hallucinations, delusions, hiccups, cramps, <u>flapping</u> tremor, myoclonus, fasciculation, and seizures.

Peripheral neuropathy:

- Usually symmetric, lower limbs.
- Sensory precedes motor dysfunction.
- Restless leg syndrome and burning feet.
- Postural hypotention (autonomic dysfunction).

Hematologic abnormalities:

Anemia:

- Develops as serum creatinine increases > 180 mcm/L and GFR declines to < 30 ml/minute.
- Normocystic, nomochromic anemia.
- Main cause: decrease production of EPO (erythropoietin).

o Platelet Dysfunction: [Step-up p.276:Platelet functions are disturbed in uremia]

- Bruising, ecchymoses, bleeding from mm
- Platelets dysfunction (count is normal): **VWF** (Von Willebrand Factor), which facilitate the interaction between platelets and endothelium through its binding to platelet glycoprotein (IIb, IIIa) receptors.

Gastrointestinal abnormalities: [V. common]

Anorexia, nausia, and vomiting.

o Uremic factor, stomatitis, esophagitis, gatritis, and peptic ulcer disease.

Dermatologic abnormalities:

- Uremic pruritus is related to:
 - Calcium and phosph deposition (Secondary ↑ PTH).
 - Hypercalcemia.
 - Peripheral neuropathy.
 - Dry skin.
 - Anemia.
 - Inadequate dialysis.

Evaluation of Patients with CKD:

- The history should document the presence of uremic symptoms and possible etiology from: Diabetes Mellitus, Hypertension, congestive Heart Failure, MM, NSAID.
- o Family history can suggest PCKD or hereditary nephritis.
- Volume depletion and obstructive nephropathy should be identified and treated promptly.
- Ultrasound small, shrunken kidneys.
- o Normal kidney size with CKD: DM, amyloid, MM.

Management of Patients with CKD:

1. Fluid and electrolytes disorders:

- Salt intake restriction **daily Na+ < 100 meq (2-4 grams)**
- Loop diuretics
- O Hyponatremia fluid restriction 1 1.5 L/day
- O Hyperkalemia:

(Patients with hyperkalemia should <u>avoid</u> exogenous sources of K+ and medications that increase K+)

- Exogenous sources of K+ [to be avoided]:
 Dates, dried fruits, citrus fruits, banana, chocolate, salt substitute.
- Medications that \(\backslash K + \) [to be avoided]:
 ACEI, ARB, NSAID, K+- sparing diuretics, B-Blockers, and heparin.
- Treatment of Hyperkalemia:
 - IV calcium gluconate 10 cc of 10% to protect the heart.
 - Followed by 25 ml of 50% dextrose solution with 5-10 units regular insulin.
 - B₂-adrenergic agonist nebulizer (salbutamol).
 - NaHCO3 IV/oral.

To redistribute K+ inside cells

2. Hyperphosphatemia and secondary hyperparathyroidism:

- o Reduce phosphate intake to < 10 mg/kg/day
- Phosphate binders:
 - Calcium carbonate

- Sevelamer (Renagel) without calcium → (for patients with tendency to have hypercalcemia)
- Lanthanum carbonate with calcium → (for patients with hypocalcemia)
- o Vitamin D (Calcitriol) 0.125 mcg/day:
 - Must be withheld until s. phosphate concentration has been controlled to < 6 mg/dl because it may cause severe soft tissue calcifications.
 - Vitamin D compounds can cause hypercalcemia and hyperphosphatemia, which may increase coronary calcification, so: parcicalcitrol (Zemplar) is an analogue that inhibits PTH synthesis without elevation of calcium/phos.
- o Indication for parathyroidectomy:
 - PTH > 800 pg/ml with symptoms of bone disease (myopathy, bone pain) persistent hyperphosphatemia soft tissue calcifications.

3. Hyperlipidemia:

The goal is to keep LDL cholesterol < 100 mg/dl by diet control and **statin group**.

4. Anemia

Target Hb/Hct:

K DOQI [Kidney Disease Outcomes Quality Initiative] → Hb 11-12

Hct 33-36%

Anemia: ↑ LVH

↓ quality of life

reduces survival in patients on HD

Conversely: Hb > 13

Hct > 42 associated with more coronary events and increased mortality as evidenced by CHOIR (USA) and CREATE (Europe) studies.

- Target iron levels:
 - Percent transferrin saturation (T-SAT) reflects iron available for erythopoiesis.
 - Serum ferritin (S. ferritin) reflects overall iron stores
 - In CKD: target T-Sat > 20 (20 50)

target S. ferritin > 100 ng/ml to 500 ng/ml

Iron supp should be withheld, if: T-sat > 50

S. ferritin > 800 ng/ml

Treatment Guidelines (Anemia):

Oral iron

- In non-dialysis patients (CKD 1-4): 100-200 mg elemental iron should be given daily in 2-3 days, either one hour before meals or two hours post. (1 tab Ferrous fumerate, 200 mg contains 66 mg elemental iron)
- In dialysis patients (CKD 5): IV iron should be given as on-going iron losses tends to be higher

> IV iron

• 1 gr of iron saccharate (ferrosac) divided into 10 doses of 100 mg given with each dialysis session.

Recombinant Erythropoeitin – epoeitin alfa (eprex) (Short acting)

- Patients on: starting dose 120 180 IU/kg/week, IV
- Pre-dialysis patients and PD patients: 80-120 IU/kg/week subcutaneously weekly dose
- Hb/Hct monitoring every 4 weeks
- The most common side effects: headache, HTN, arthralgia, and diarrhea
- Resistance to epoeitin:
 - 1. Inadequate Epo dose
 - 2. Anemia of chronic disease (infection, inflammation)
 - 3. Functional iron deficiency
 - 4. Secondary to hyperparathyroidism
 - 5. Carnitine deficiency
 - 6. Hemoglobinopathies
 - 7. Aluminum toxicity
 - 8. B12/folate deficiency
 - 9. Malnutrition

Darbepoetin Alfa (Aranesp) (Long acting)

- Recombinant Epo
- Half-life: threefold longer IV and twofold longer S/C than that of epoetin
- Recommended starting dose 0.45 mcg/kg S/C weekly or double the dose every 2 weeks.

Summary:

- > Chronic kidney disease (Chronic renal failure) is **irreversible**.
- **Chronic kidney disease (CKD)** has **5 stages**. Stage 5 is end stage renal disease (ESRD).
- ▶ <u>Diabetes mellitus</u>, <u>hypertension</u> and <u>glomerulonephritis</u> are among the <u>top 3 causes</u> of CKD.
- **Pathophysiology** of CKD includes:
 - 1. <u>Loss of nephron mass</u>. → Because of that, the remaining nephrons try to compensate. → hypertrophy of remaining nephrons and later on → causes glomerulosclerosis → eventually cause loss of nephron mass (a vicious cycle)
 - 2. Increased production of growth factors
- ➤ Since the kidney is responsible for excreting products of protein metabolism (eg: urea and many other toxins), when kidneys fail, these products will accumulate → <u>uremic</u> syndrome.
- ➤ Kidneys play a role in metabolic and electrolytes balance. Once **kidneys fail**, the following occurs:
 - 1. **Insulin is not degraded properly** by failing kidneys → patients need less insulin

- 2. <u>Dyslipidemia</u>
- 3. **Hyponatremia** might occur (large amounts of water retained \rightarrow sodium is diluted)
- 4. **Hyperkalemia** (when compensatory mechanisms fail + GFR significant reduction)
- 5. <u>Metabolic acidosis</u> occurs because: volatile acids aren't excreted, bicarbonates regeneration in the kidney is decreased, HCO₃ wasting is increased and H⁺ secretion to urine is decreased.
- 6. <u>Calcium and phosphate abnormalities</u> occur in CKD: <u>Hyperphosphatemia</u> and <u>hypocalcemia</u> which lead to increased parathyroid hormone production (hyperparathyroidism)
- ► <u>Hyperphosphatemia</u> is an independent <u>risk factor</u> for morbidity and mortality from cardiovascular events in ESRD.
- ➤ Renal osteodystrophy (ROD) in CKD results from: disturbances in mineral ions levels (Ca⁺⁺, Mg⁺, PO₄), disturbance in PTH and Vit-D levels.
- **Spectrum of ROD:** Osteitis fibrosa cystic, osteomalacia, adynamic bone disease and combination of any of those.
- **Abnormalities** in CKD:
 - <u>Cardiovascular</u> (in ESRD): HTN, cardiomyopathy, pericarditis and pericardial effusion
 - Neuromuscular: CNS abnormalities (confusion, decreased attention, flapping tremors, seizures... etc).

<u>Peripheral</u> neuropathy (postural hypotension, restless leg syndrome, sensory neuropathy precedes motor).

- **Hematologic**: Anemia (normocytic normochromic), platelet dysfunction (↓vWF)
- **Gastrointestinal:** Nausia, vomiting, anorexia
- Dermatologic: Pruritis
- **Management** of CKD patients:
 - Treat fluid & electrolytes disorders:
 - Restrict Na+intake
 - Loop diuretics
 - Restrict fluid intake
 - Restrict potassium intake
 - Avoid drugs that cause potassium elevation in blood
 - Treat hyperkalemia: Calcium gluconate, insulin, B2 agonist, NaHCO3 I.V.
 - Treat hyperphosphatemia & hyperparathyroidism:
 - Restrict phosphate intake
 - Phosphate binding agents: calcium bicarbonate, sevelamer, lanthanum carbonate
 - Treat Vit-D deficiency: (Make sure levels of phosphate are corrected first.)
 - Treat hyperlipidemia: statins
 - Treat anemia:
 - **Iron** supplement (IV or oral), make sure T.sat and S. ferritin are within normal.
 - **Erythropoietin**: epoietin alpha (short acting), darbepoietin alpha (long acting)