

Lecture 1: Introduction to Toxicology

Lecture outlines:

- 1. Initial approach
- 2. Toxic Syndromes
- 3. Decontamination
- 4. Diagnostic Tests
- 5. Observation

TOXIDROME

Constellation (group) of physical findings that can be attributed to a specific class of toxins and can provide important clues to narrow the differential diagnosis.

However:

- ☐ Lots of medications have unique effects not easily grouped
- ☐ Polydrug overdoses may result in overlapping and confusing mixed syndromes.

5 basic toxidromes:					
Sympathomimetic	Opiate	Cholinergic	Anti cholinergic	Sedative hypnotics	

Mechanism of action:

Excessive sympathetic stimulation involving epinephrine, norepinephrine and dopamine leading to excessive stimulation of alpha and beta adrenergic system.

MANAGEMENT:

1- Supportive care

- Monitor airway, diagnose ICH, rhabdomyolysis.
- IV fluids for insensible loses and volume repletion
- 2- Benzodiazipines (to control and sedate the patient)
- 3- BP management if severe
- 4- Give BOTH alpha and beta blockers (labetalol).
- >> NEVER GIVE BETA BLOCKERS ONLY because alpha effect will dominate and worsen the symptoms.

Sympathomimetic

EXAMPLES:

- Cocaine
- Methamphetamine/Amphetamines (Captagon)
- Ecstasy (MDMA)
- ADHD* drugs e.g. Ritalin, Adderal
- Ephedrine
- Caffeine (e.g. energy drinks)

Amphetamine

Cocaine

❖ FEATURES:

- Tachycardia +/- arrhythmias
- Mydriasis
- Diaphoresis
- Hypertension +/- ICH**
- Confusion with agitation
- Seizures
- Rhabdomyolysis (due to excess movement) renal failure can result

^{*} Attention deficit hyperactivity disorder

^{**} Intracerebral hemorrhage

*** MANAGEMENT:**

* Competitive opioid antagonist:

Naloxone

- Goal of return of spontaneous respirations sufficient to ventilate the patient appropriately
- May have to re-dose as opiates may act longer than antagonist

FEATURES:

- Coma
- Miosis (pin point pupil)
- Respiratory depression (slow shallow breathing)
- Peripheral vasodilation
- Orthostatic hypotension
- Flushing (histamine)
- Bronchospasm
- Pulmonary edema
- Seizures (Meperidine, Propoxyphene)
- Constipation on long run

- ➤ Morphine and codeine
- > Heroin
- Methadone
- Meperidine
- > Hydrocodone
- Oxycodone

MANAGEMENT:

1- Supportive care

IVF to replace insensible losses from agitation, hyperthermia

- 2- Benzodiazibines to stop agitation
- **3- Physostigmine (cholinomimetic)**
- Induces cholinergic effects
- Short acting
- May help with uncontrollable delirium
- Do not use if ingestion not known
- Danger with TCAs (tricyclic anti depressants)

Mechanism of action:

ANTAGONIZE the effects of endogenous Acetylcholine by blocking the receptors.

Anticholinergic

CNS muscarinic blockade:

- Confusion
- Agitation
- Myoclonus
- Tremor
- Abnormal speech
- Hallucinations
- Coma

Peripheral muscarinic blockade:

- Mydriasis
- Anhidrosis*
- Tachycardia
- Urinary retention*
- Ileus

EXAMPLES:

- Atropine
- Scopolamine
- Amantadine

*All the following classes have ANTICHOLINERGIC activity:

- Antihistamines
- Antiparkinsonians
- Antipsychotics
- Antidepressants
- Antispasmodics
- Mydriatics
- Muscle relaxants
- Many plants

(e.g. jimson weed, Amanita muscaria)

* Distinguishing features of anticholinergic from SYMPATHOMIMETIC.

Mechanism of action:

Block acetylcholinesterase from working (prevent Ach degradation)

- => excess of acetylcholine in synapses
- => excess stimulation of the muscarinic and nicotinic systems

Cholinergic

***** EXAMPLES:

- Organophosphate and carbamate insecticides.
- Physostigmine
- Edrophonium
- Some mushrooms

***** MANAGEMENT:

- 1- Supportive care
- 2- Antagonize muscarinic symptoms
- => Atropine
- 3- Stop aging of enzyme blockade
- => 2-PAM (Pralidoxime): regenerate AchE.
- 4- Prevent and terminate seizures
- => Diazepam

FEATURES: (SLUDGE syndrome)

Salivation

Lacrimation

Urination

Diaphoresis

Gl upset: Diarrhea, vomiting

Eye: Miosis

Mechanism of action:

- Different agents have different mechanisms
- Many of them interfere in the GABA system: increase GABA stimulation and induce sedation

GABA_A Receptor:

EXAMPLES:

- Benzodiazepines (e.g. Rohypnol)
- Diazepam
- Zolpidem (Ambien)

MANAGEMENT:

- 1- Supportive care
- 2- Use benzo antidote "Flumazinil"
- It is an antagonist at the benzodiazepines receptor
- RARELY INDICATED
- If seizures develop either because of benzo withdrawal, a co-ingestant or metabolic derangements, have to use 2nd line agents, barbiturates, for seizure control

❖ FEATURES

- CNS depression, lethargy
- Can induce respiratory depression
- Can produce bradycardia or hypotension

GASTRIC DECONTAMINATION:

☐ METHODS

1. **Ipecac:** Induce vomiting.

2. Gastric Lavage: take out pills from the stomach

3. Charcoal: Adsorb the toxins in the gut

4. Whole Bowel: flush out the system

Why is the vast majority of patients are unlikely to benefit from gastric decontamination?

- ✓ They have ingested nontoxic substances
- ✓ They have ingested nontoxic amount of toxic substances
- ✓ They present long after decontamination would be expected to be of any benefit!

Who are the Patients who theoretically may benefit from decontamination?

- ✓ Present early after ingestion (1 hour)
- ✓ Have taken a delayed release products
- ✓ Have taken potentially life-threatening overdose

<u>Ipecac</u>

- Emetine and Cephaeline
- Induces emesis
- DOES NOT HAVE A ROLE IN ED CARE

Not used anymore because risk of aspiration outweighs vomiting.

GASTRIC LAVAGE

- Rarely, if ever indicated
- Indicated in Life threatening Ingestionsthat occurred within < 1 hour
- Airway protection is key
- Lots of complications

NOTE: DO not lavage tylenol, do not lavage an SSRI

Activated Charcoal

CHARCOAL

- **No proven outcome benefit**, and its use should be carefully weighed against potential complications.
- Works to adsorb substances to its matrix

Not effective for metals, caustics, alcohol, alkali, acid, hydrocarbons

Contraindications

Aspiration, ARDS, bowel obstruction

Dosing 1 g/kg po dose \pm single dose of cathartic.

If GI decontamination is considered, no matter the method, potential benefit must be weighed against the potential complications.

Diagnostic studies

Acid-base status

Liver Function Test (LFT)

Renal function

Cardiac conduction (ECG)

Drug levels

Based on history or clinical findings

Toxin specific finding

e.g. CK for cocaine

 Other common ingestants may have common diagnostic tests:

1- Paracetamol:

Paracetamol level, LFT, coagulation profile.

2- Salicylates

ASA level, metabolic acidosis, respiratory alkalosis, renal insufficiency, anion gap

3- SSRI:

Prolonged QTc (corrected QT interval)

4- Toxic Alcohols

- Osmolality gap with ethylene glycol (EG), methanol and isopropyl alcohol
- Anion gap acidosis with EG and methanol.

• ECG

- Evaluate:
- 1. QRS and QTc
- 2. presence of blocks, rhythm

QTc > 450 and a QRS > 100 can be concerning for toxin induced (e.g. TCAs) cardiac abnormalities

- Radiographs:
- Limited usefulness
- Radiodense substances on AXR:

(CHIPES)

Chloral hydrate, Ca

Heavy metals

Iron, iodides

Phenothiazines

Enteric coated

Slow release

- Packers/ stuffers
- Aspiration

Observation Period:

- 1. IF: Normal labs, normal ECG, normal exam, no history of extended release drug
 - ⇒ Observe for approximately 6 hours.
- 2. IF: Extended release medications, oral hypoglycemic involved
 - => Observation depending on agent, 12-24 hours

Case...

- > 18 years old man found "down" > EMS transports Reports from scene: "he took something" > No pill bottles on scene, No family with him, Friends that found him are long gone > He is now in your ED, You are never going to know exactly what he took.
- How do I decontaminate him(if I need to do!)? A. Charcoal as long as he is not in aspiration risk
- What do I order? Chem, ASA, Paracetamol, ECG at a minimum
- **Do I give him an antidote?** Coma cocktail**, others as indicated by clinical condition & or labs.
- When can he go to psych? Observe for 6 hours and re-evaluate

One combination include: dextrose, flumazenil, naloxone, and thiamine

^{**}refers to a combination of substances administered in an emergency to comatose individuals, at a time when the cause of the coma in the individual was not yet known.

Match the features in column A to their best answers in column B:

No	Α	В
1	Agitated, pupils 8 mm, sweaty, HR 140, BP 230/130	Opiate (2)
2	Unarousable, RR 4, pinpoint pupils	Cholinergic (4)
3	Confused, pupils 8mm, flushed, dry skin, no bowel sounds, 1000 cc output with Foley	Sedative hypnotics (5)
4	Vomiting, urinating uncontrollably, HR 40, Pox 80% from bronchorrhea, pupils 2 mm	Sympathomimetic (1)
5	Lethargic, HR 67, BP 105/70, RR 12, pupils midpoint	Anti cholinergic (3)

MCQs

Q6: Which of the following features distinguish anticholinergic from sympathomimetic?

- A- Dry skin
- B- Accelerated heart rate
- C- Urinary retention
- D- A+C

Q7: In which of the following toxidromes DIAZEPAM is used to terminate seizures?

- A- opiate
- **B- Cholinergic**
- C- Anticholinergic
- **D- Sedatives**

Q8: Which of the following is the mechanism of action of sedativehypnotics?

- A- Stimulate serotonin and induce alert
- B- Stimulate dopamine and depress arousal
- C- Stimulate GABA and induce sedation
- D-Inhibit GABA and induce sedation

Q9: A 5year old child diagnosed with ADHD, he is at risk of developing which of the following toxidromes?

- A- Opiate
- **B- Sympathomimetic**
- C- Anticholinergic
- D- Organophosphate

Q10: Which of the following is an indication to manage a patient with gastric lavage?

- A- Presented to the ER 1 hour after ingestion
- B- patient have taken nontoxic dose of toxic substance
- C-Ingestion of nontoxic substance
- D- Patient presented with coma.

