
Dyslipidemia (Med-3)

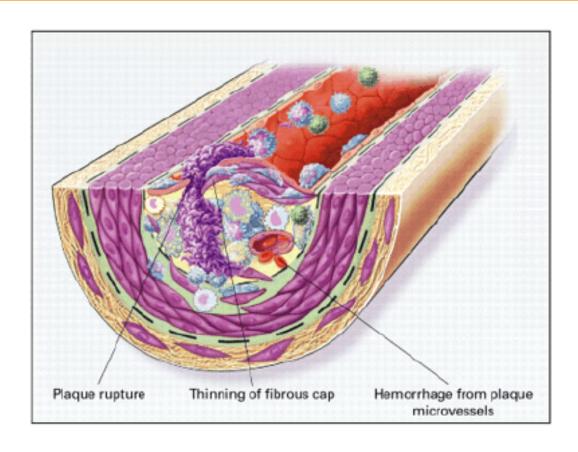
Dr Anwar A Jammah, MD, FRCPC, FACP, CCD, ECNU.

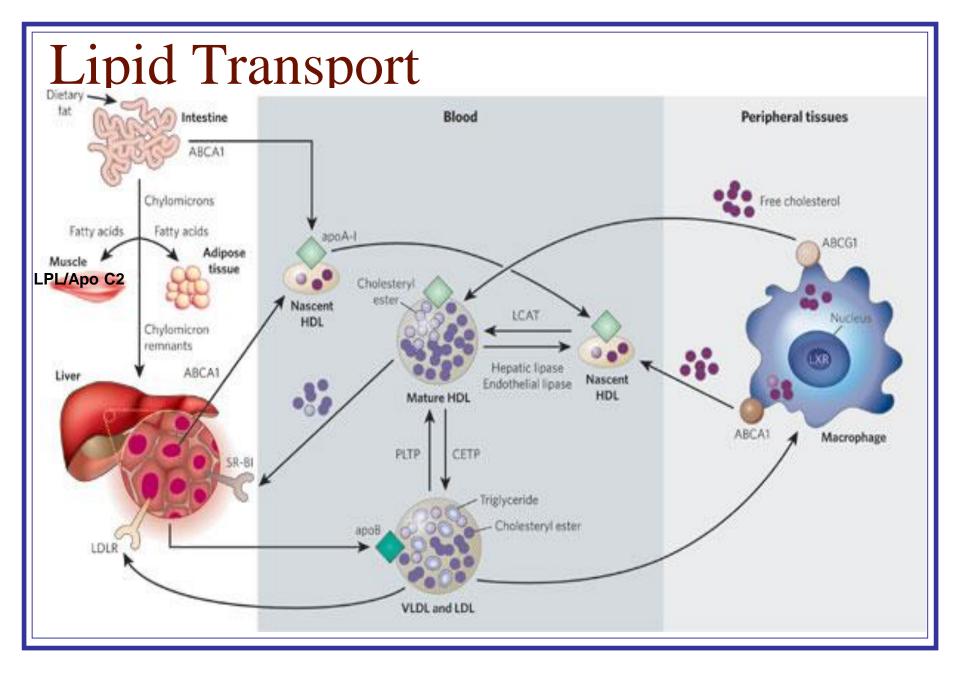
Asst. Professor and Consultant

Medicine, Endocrinology

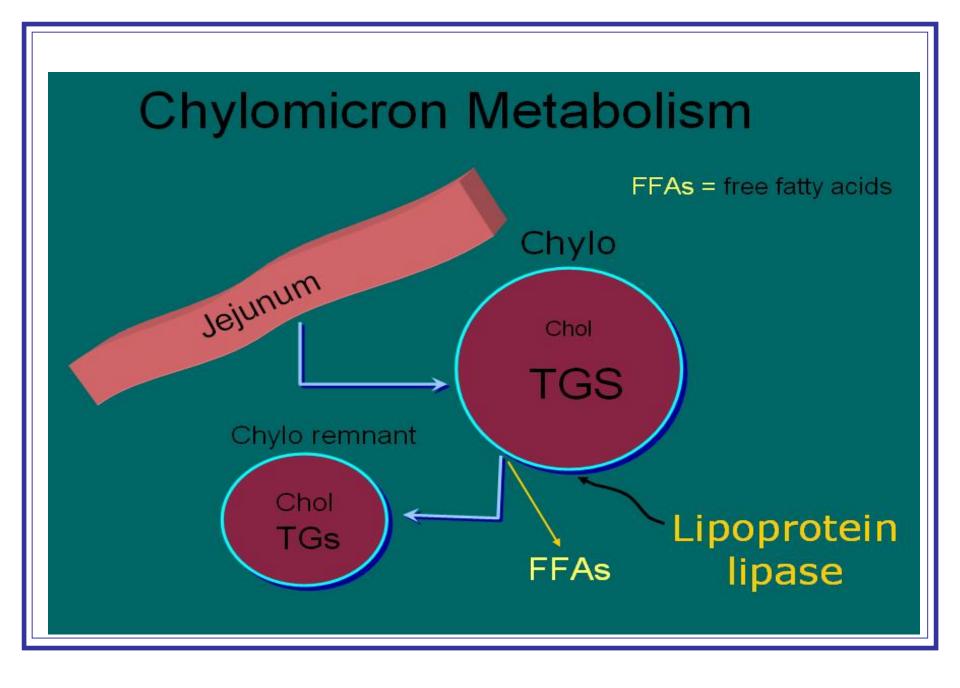
Department of Medicine, King Saud University

Rader DJ, Daugherty, A Nature 2008; 451:904-913


The story of lipids

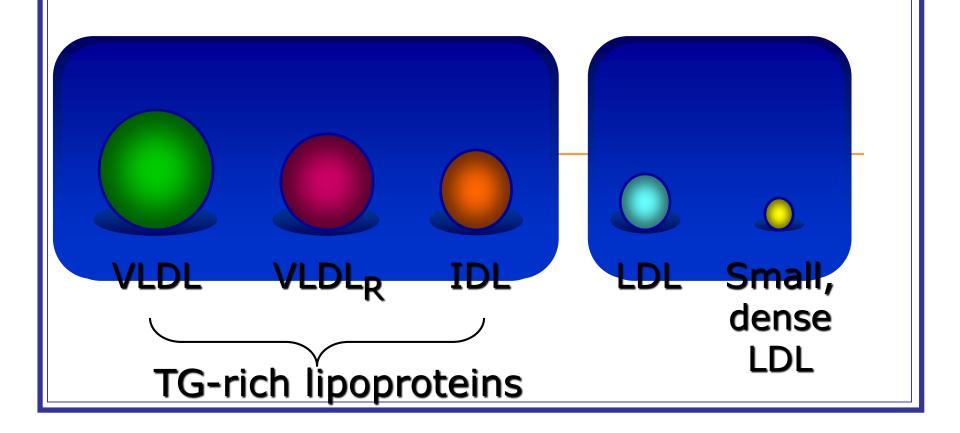

- Chylomicrons transport fats from the intestinal mucosa to the liver
- In the liver, the chylomicrons release triglycerides and some cholesterol and become low-density lipoproteins (LDL).
- LDL then carries fat and cholesterol to the body's cells.
- High-density lipoproteins (HDL) carry fat and cholesterol back to the liver for excretion.

The story of lipids (cont.)

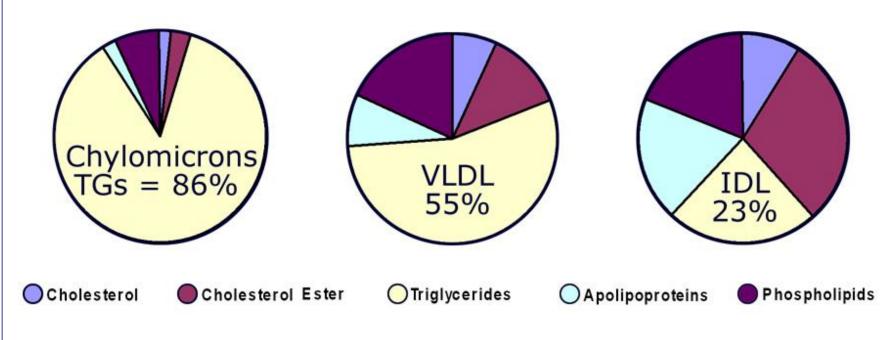

- When oxidized LDL cholesterol gets high, atheroma formation in the walls of arteries occurs, which causes atherosclerosis.
- HDL cholesterol is able to go and remove cholesterol from the atheroma.
- Atherogenic cholesterol → LDL, VLDL, IDL


Atherosclerosis

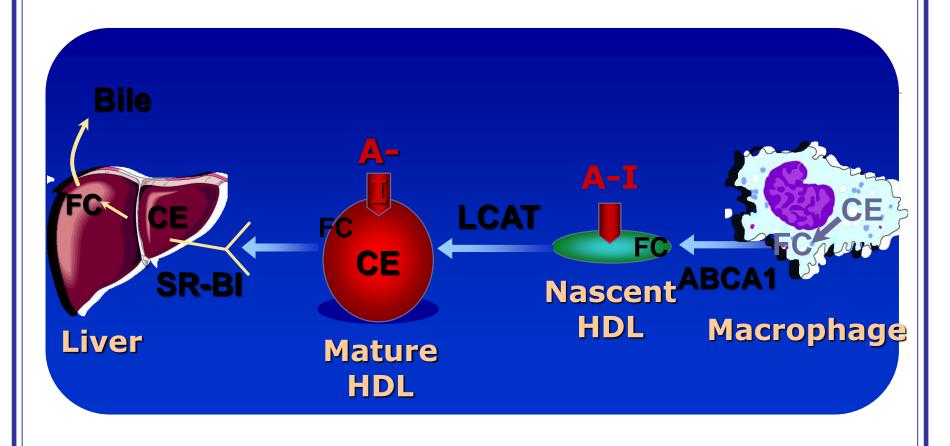
Rader DJ, Daugherty, A Nature 2008; 451:904-913



VLDL Metabolism


FFAs = free fatty acids **VLDL** Chol TGs LDL IDL Chol Chol Lipoprotein TGs lipase Hepatic **FFAs** lipase **FFAs**

Atherogenic Particles


MEASUREMENTS:

Composition of Triglyceride-Rich Lipoproteins (% dry mass)

HDL and Reverse Cholesterol Transport

Plasma lipoproteins

Туре	Source	Major lipid	Apoproteins	ELFO	Athero- genicity
Chylomicrons	Gut	Dietary TGs	A-I, B-48, C-I, C-III, E	no mobility	– (pancreatiti s)
VLDL	Liver	Endogenous TGs	B-100, E, C- II, C-III,	Pre-β	+
IDL	VLDL remnant	Ch esters, TGs	B-100, C-III, E	Slow pre- β	+
LDL	VLDL, IDL	Ch esters	B-100	β	+++
HDL	Gut, liver	Ch esters, PLs	A-I, A-II, C-II, C-III, D, E	α	anti- atherogenic

Hereditary Causes of Hyperlipidemia

- Familial Hypercholesterolemia
 - Codominant genetic disorder, coccurs in heterozygous form
 - Occurs in 1 in 500 individuals
 - Mutation in LDL receptor, resulting in elevated levels of LDL at birth and throughout life
 - High risk for atherosclerosis, tendon xanthomas (75% of patients), tuberous xanthomas and xanthelasmas of eyes.
- Familial Combined Hyperlipidemia
 - Autosomal dominant
 - Increased secretions of VLDLs
- Dysbetalipoproteinemia
 - Affects 1 in 10,000
 - Results in apo E2, a binding-defective form of apoE (which usually plays important role in catabolism of chylomicron and VLDL)
 - Increased risk for atherosclerosis, peripheral vascular disease
 - Tuberous xanthomas, striae palmaris

Fredrickson classification of hyperlipidemias

Phenotype	Lipoprotein(s) elevated	Plasma cholesterol	Plasma TGs	Athero- genicity	Rel. freq.	Treatment
I	Chylomicrons	Norm. to ↑	↑ ↑↑↑	– pancreatiti s	<1%	Diet control
IIa	LDL	$\uparrow \uparrow$	Norm.	+++	10%	Bile acid sequestrants, statins, niacin
IIb	LDL and VLDL	$\uparrow \uparrow$	$\uparrow \uparrow$	+++	40%	Statins, niacin, fibrates
III	IDL	$\uparrow \uparrow$	$\uparrow \uparrow \uparrow$	+++	<1%	Fibrates
IV	VLDL	Norm. to ↑	$\uparrow \uparrow$	+	45%	Niacin, fibrates
V	VLDL and chylomicrons	↑ to ↑↑	<u> </u>	+ pancreatiti s	5%	Niacin, fibrates

Primary hypercholesterolemias

_Disorder	Genetic defect	_Inheritance	Prevalence	Clinical features
Familial hyper- cholesterolemia	LDL receptor	dominant	heteroz.:1/500 5% of MIs <60 yr homoz.: 1/1 million	premature CAD (ages 30–50) TC: 7-13 mM CAD before age 18 TC > 13 mM
Familial defective apo B-100	apo B-100	dominant	1/700	premature CAD TC: 7-13 mM
Polygenic hypercholestero lemia	multiple defects and mechanisms	variable	common 10% of MIs <60 yr	premature CAD TC: 6.5-9 mM
Familial hyper- alphalipoprotein emia	unknown	variable	rare	less CHD, longer life elevated HDL

Primary hypertriglyceridemias

Disorder	Genetic defect	Inheritance	Prevalence	Clinical features
LPL deficiency	endothelial LPL	recessive	rare 1/1 million	hepatosplenomegaly abd. cramps, pancreatitis TG: > 8.5 mM
Apo C-II deficiency	Apo C-II	recessive	rare 1/1 million	abd. cramps, pancreatitis TG: > 8.5 mM
Familial hyper- triglyceridemia	unknown enhanced hepatic TG- production	dominant	1/100	abd. cramps, pancreatitis TG: 2.3-6 mM

Primary mixed hyperlipidemias

Disorder	Genetic defect	Inheritance	Prevalence	Clinical features
Familial dysbeta- lipoproteinemia	Apo E high VLDL, chylo.	recessive rarely dominant	1/5000	premature CAD TC: 6.5 -13 mM TG: 2.8 - 5.6 mM
Familial combined	unknown high Apo B-100	dominant	1/50 – 1/100 15% of MIs <60 yr	premature CAD TC: 6.5 -13 mM TG: 2.8 - 8.5 mM

Dietary sources of Cholesterol

Type of Fat	Main Source	Effect on Cholesterol levels
Monounsaturated	Olives, olive oil, canola oil, peanut oil, cashews, almonds, peanuts and most other nuts; avocados	Lowers LDL, Raises HDL
Polyunsaturated	Corn, soybean, safflower and cottonseed oil; fish	Lowers LDL, Raises HDL
Saturated	Whole milk, butter, cheese, and ice cream; red meat; chocolate; coconuts, coconut milk, coconut oil, egg yolks, chicken skin	Raises both LDL and HDL
Trans	Most margarines; vegetable shortening; partially hydrogenated vegetable oil; deepfried chips; many fast foods; most commercial baked goods	

Causes of Hyperlipidemia

- Diet
- Hypothyroidism
- Nephrotic syndrome
- Anorexia nervosa
- Obstructive liver disease
- Obesity
- Diabetes mellitus
- Pregnancy

- Obstructive liver disease
- Acute heaptitis
- Systemic lupus erythematousus
- AIDS (protease inhibitors)

Secondary hyperlipidemias

Disorder	VLDL	LDL	HDL	Mechanism
Diabetes mellitus	↑ ↑ ↑	↑	↓	VLDL production ↑, LPL ↓, altered LDL
Hypothyroidism	↑	$\uparrow\uparrow\uparrow$	\downarrow	LDL-rec.↓, LPL ↓
Obesity	↑ ↑	↑	\downarrow	VLDL production ↑
Anorexia	-	↑ ↑	-	bile secretion ↓, LDL catab. ↓
Nephrotic sy	↑ ↑	↑ ↑ ↑	\downarrow	Apo B-100 ↑ LPL ↓ LDL-rec. ↓
Uremia, dialysis	$\uparrow\uparrow\uparrow$	-	\downarrow	LPL \downarrow , HTGL \downarrow (inhibitors \uparrow)
Pregnancy	↑ ↑	↑ ↑	↑	oestrogen \uparrow VLDL production \uparrow , LPL \downarrow
Biliary obstruction PBC	-	-	↓	Lp-X $\uparrow \uparrow$ no CAD; xanthomas
Alcohol	↑↑ chylomicr. ↑	-	1	dep. on dose, diet, genetics

Checking lipids

- Nonfasting lipid panel
 - measures HDL and total cholesterol
- Fasting lipid panel
 - Measures HDL, total cholesterol and triglycerides
 - LDL cholesterol is calculated:
 - LDL cholesterol = total cholesterol (HDL + triglycerides/5)

When to check lipid panel

- Different Recommendations
 - Adult Treatment Panel (ATP III) of the National Cholesterol Education Program (NCEP)
 - Beginning at age 20: obtain a fasting (9 to 12 hour) serum lipid profile consisting of total cholesterol, LDL, HDL and triglycerides
 - Repeat testing every 5 years for acceptable values

- United States Preventative Services Task Force
 - Women aged 45 years and older, and men ages 35 years and older undergo screening with a total and HDL cholesterol every 5 years.
 - If total cholesterol > 200 or HDL <40, then a fasting panel should be obtained
 - Cholesterol screening should begin at 20 years in patients with a history of multiple cardiovascular risk factors, diabetes, or family history of either elevated cholesteral levels or premature cardiovascular disease.

Treatment Targets

- LDL: To prevent coronary heart disease outcomes (myocardial infarction and coronary death)
- Non LDL(TC/HDL): To prevent coronary heart disease outcomes (myocardial infarction and coronary death)
- Triglyceride: To prevent pancreatitis and may be coronary heart disease outcomes (myocardial infarction and coronary death)

LDL and Non-LDL(HDL/TC)

Risk Assessment Tool for Estimating 10-year Risk of Developing Hard CHD (Myocardial Infarction and Coronary Death)

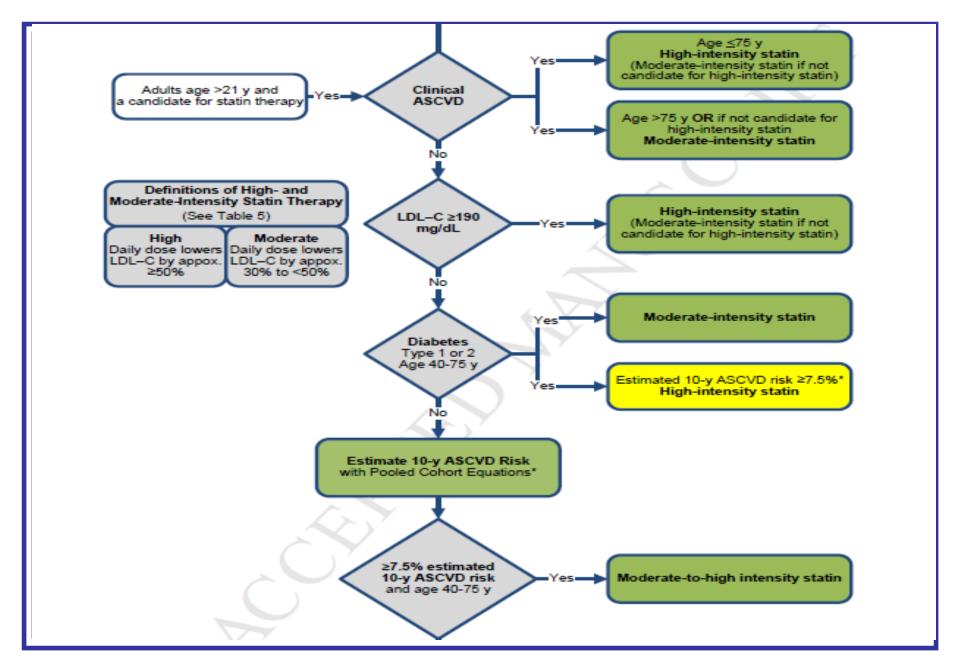
Framingham Heart Study to estimate 10-year risk for coronary heart disease outcomes

http://hp2010.nhlbihin.net/atpiii/CALCULATOR.asp?usertype=prof

- Age
- > LDL-C
- T. Chol
- > HDL-C
- Blood Pressure
- Diabetes
- \$moking

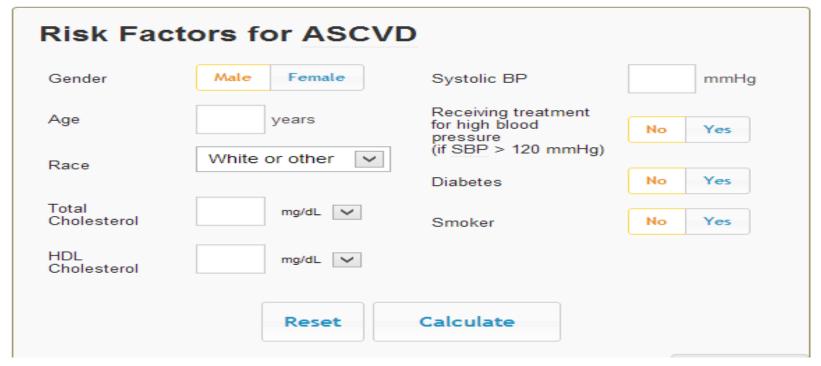
Adult Treatment Panel III Guidelines for Treatment of Hyperlipidemia

Risk Category	<u>Begin Lifestyle</u> <u>Changes If:</u>	<u>Consider Drug Therapy If:</u>	LDL Goal
High: CAD or CAD equivalents (10-yr risk > 20%)	LDL ≥ 2.58 mM	LDL ≥ 2.58 mM (drug optional if < 2.58 mM)	< 2.58 mM; < 1.8 mM optional
Moderate high: ≥ 2 risk factors with 10-yr risk 10 to 20%*	LDL ≥ 3.36 mM	LDL ≥ 3.36 mM	< 3.36 mM; < 2.58 mM optional
Moderate: ≥ 2 risk factors with 10-yr risk < 10%*	LDL ≥ 3.36 mM	LDL ≥ 4.13 mM	< 3.36 mM; < 2.58 mM optional
Lower: 0-1 risk factor	LDL ≥ 4.13 mM	LDL ≥ 4.91 mM (drug optional if 4.13-4.88 mM)	< 4.13 mM


^{*}For 10-yr risk, see Framingham risk tables

Canadian New Guideline

Risk categories


Risk level	10-year CAD risk	Recommendations
High	≥20%	Treatment targets: Primary target: LDL-C <2.0 mmol/L Secondary target: TC/HDL-C <4.0
Moderate	10% - 19%	Treat when: LDL-C ≥3.5 mmol/L or TC/HDL-C ≥5.0
Low	<10%	Treat when: LDL-C ≥5.0 mmol/L or TC/HDL-C ≥6.0

High risk includes coronary artery disease (CAD), peripheral artery disease, cerebrovascular disease and most patients with diabetes.

Pooled Cohort Risk Assessment Equations

 Predicts 10-year risk for a first atherosclerotic cardiovascular disease (ASCVD) event

http://clincalc.com/Cardiology/ASCVD/PooledCohort.aspx

Intensity of Statin Therapy in primary and secondary prevention

Table 5. High- Moderate- and Low-Intensity Statin Therapy (Used in the RCTs reviewed by the Expert Panel)*

High-Intensity Statin Therapy	Moderate-Intensity Statin Therapy	Low-Intensity Statin Therapy
Daily dose lowers LDL−C on average, by approximately ≥50%	Daily dose lowers LDL-C on average, by approximately 30% to <50%	Daily dose lowers LDL-C on average, by <30%
Atorvastatin (40†)–80 mg Rosuvastatin 20 (40) mg	Atorvastatin 10 (20) mg Rosuvastatin (5) 10 mg Simvastatin 20–40 mg‡ Pravastatin 40 (80) mg Lovastatin 40 mg Fluvastatin XL 80 mg Fluvastatin 40 mg bid Pitavastatin 2–4 mg	Simvastatin 10 mg Pravastatin 10–20 mg Lovastatin 20 mg Fluvastatin 20–40 mg Pitavastatin 1 mg

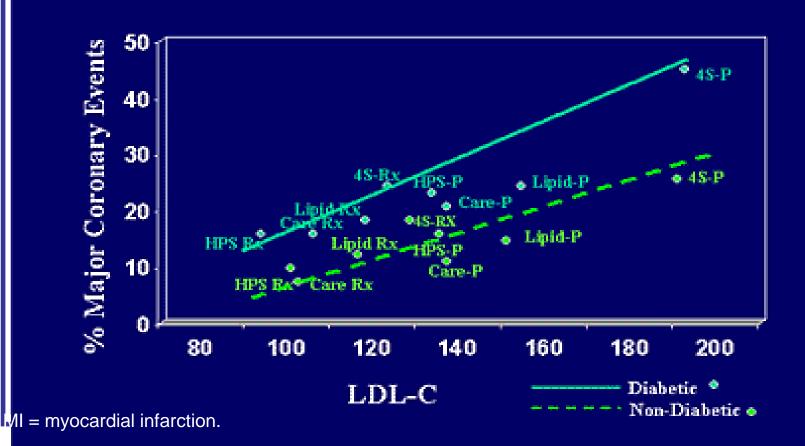
Table 8.1—Recommendations for statin treatment in people with diabetes

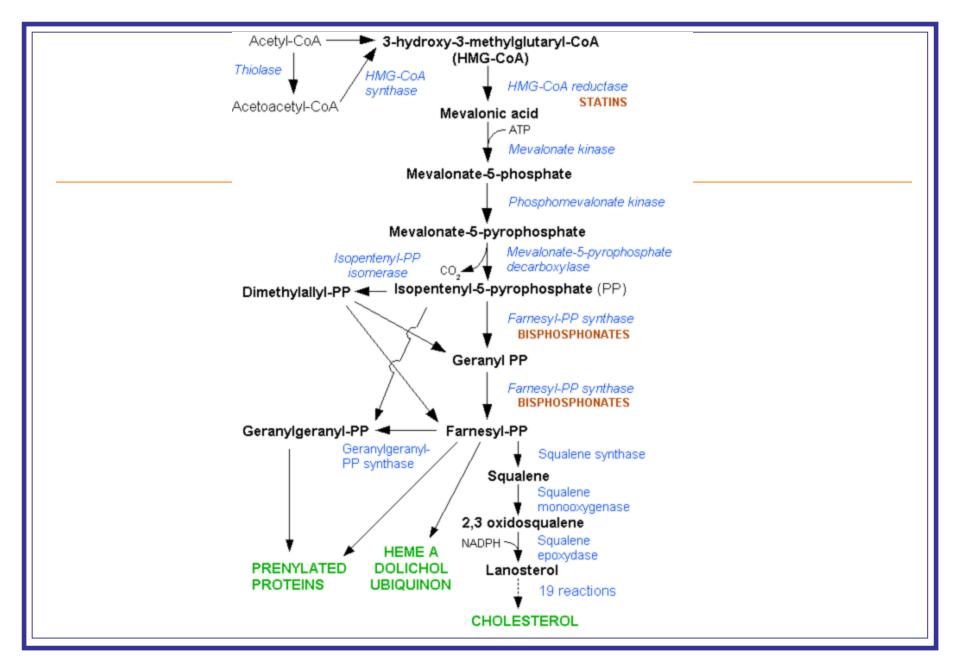
Age	Risk factors	statin dose*	Monitoring with lipid panel
<40 years	None CVD risk factor(s)** Overt CVD***	None Moderate or high High	Annually or as needed to monitor for adherence
40–75 years	None CVD risk factors Overt CVD	Moderate High High	As needed to monitor adherence
>75 years	None CVD risk factors Overt CVD	Moderate Moderate or high High	As needed to monitor adherence

^{*}In addition to lifestyle therapy.

^{**}CVD risk factors include LDL cholesterol ≥100 mg/dL (2.6 mmol/L), high blood pressure, smoking, and overweight and obesity.

^{***}Overt CVD includes those with previous cardiovascular events or acute coronary syndromes.


Treatment of Hyperlipidemia


- Lifestyle modification
 - Low-cholesterol diet
 - Exercise

Medications for Hyperlipidemia

1				
	<u>Drug Class</u>	<u>Agents</u>	Effects (% change)	Side Effects
	HMG CoA reductase inhibitors	Statins	↓LDL (18-55),↑ HDL (5-15) ↓ Triglycerides (7-30)	Myopathy, increased liver enzymes
	Cholesterol absorption inhibitor	Ezetimibe	↓ LDL(14-18), ↑ HDL (1-3) ↓Triglyceride (2)	Headache, GI distress
	Nicotinic Acid		↓LDL (15-30), ↑ HDL (15-35) ↓ Triglyceride (20-50)	Flushing, Hyperglycemia, Hyperuricemia, Gl distress, hepatotoxicity
	Fibric Acids	Gemfibrozil Fenofibrate	↓LDL (5-20), ↑HDL (10-20) ↓Triglyceride (20-50)	Dyspepsia, gallstones, myopathy
	Bile Acid sequestrants	Cholestyramin e	↓ LDL ↑ HDL No change in triglycerides	GI distress, constipation, decreased absorption of other drugs

Statin Risk Reduction in Diabetic Patients and Non-Diabetic Patients

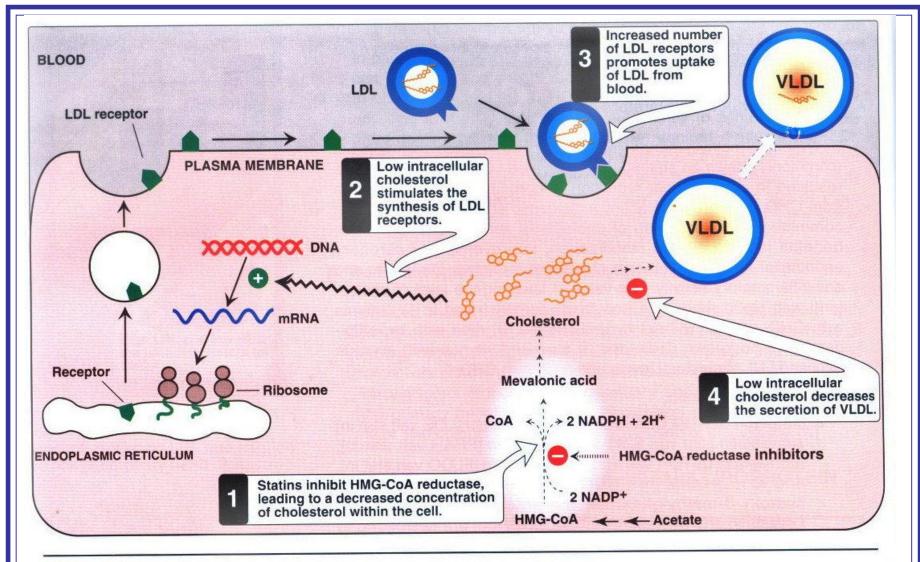
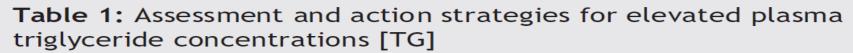



Figure 21.5 Inhibition of HMG-CoA reductase by the statin drugs.

Table 1: Assessment and action strategies for elevated plasma triglyceride concentrations [TG]

	[TG], mmol/L	Step	Action and comments	Retest interval, mo*
	< 2	 Reass 	ne current management ess lipid profile regularly, to ensure LDL-C] is at target	6-12
	≥ 2, < 5	TherapeWeighReductReductIncreases[LDL-C]	3-6 at	
		ContrReass	other secondary factors ol glycemia, if diabetic ess medications; consider lipid-neutr natives	al
		IntensFish o	er pharmacologic treatment sify LDL-lowering (e.g., statin therap oil (omega-3 fatty acid) n (e.g., extended release)	y)

	≥ 5, < 10	4.	 Intensify steps 1-3, above [LDL-C] cannot be estimated when [triglycerides] > 5 mmol/L Apolipoprotein B determination might be helpful 	2-3	
		5.	Consider fibrate therapy, e.g., • Bezafibrate (Bezalip) 400 mg/d • Fenofibrate — Lipidil micro 200 mg/d — Lipidil supra 160 mg/d — Lipidil EZ 145 mg/d • Gemfibrozil (Lopid) 600-1200 mg/d		
	≥ 10	6.	Further intensify steps 1-3 With acute pancreatitis: • Very-low-fat diet (10%-15% of energy intake) • Cessation of alcohol • Insulin, if indicated for glycemic control • Admit patient to hospital — Nothing by mouth: IV fluid replacement — Plasma exchange is unhelpful	1-2	
		7.	Initiate fibrate therapy • Monitor serum [creatinine]		
		8.	Consider specialist referral	-	

STATIN Safety recommendations

Conditions that could predispose pts to statin side effect:

- Impaired renal or hepatic function
- History of previous statin intolerance or muscle disorder
- Age >75y
- Unexplained ALT elevation > 3x ULN
- History of hemorrhagic stroke
- Asian ancestry

STATIN Safety recommendations

- Check baseline ALT prior initiating the statin (Grade B)
- Check LFTs if patient develops Symptoms of hepatic dysfunction (Grade E)
- If 2 consecutive LDL <40, Consider decreasing the statin dose (Grade C, weak recommendation)
- It may be harmful to initiate simvastatin 80mg, or increase the dose of simvastatin to 80mg (Grade B)